NEET-XII-Physics

07: Circular Motion

with Solutions - page 5
Qstn# iv-15 Prvs-QstnNext-Qstn
  • #15
    Suppose the bob of the previous problem has a speed of 1.4 m/s when the string makes an angle of 0.20 radian with the vertical. Find the tension at this instant. You can use cos θ ≈ 1 - θ2/2 and SINθ ≈ θ for small θ.
    Ans : Given:
    Mass of the bob = m = 0.1 kg
    Length of the circle = R = 1 m
    Velocity of the bob = v = 1.4 m/s
    Let T be the tension in the string when it makes an angle of 0.20 radian with the vertical.

    From the free body diagram, we get:
    `` T-mg\,\mathrm{\,cos \,}\theta =\frac{m{v}^{2}}{R}``
    `` T=\frac{m{v}^{2}}{R}+mg\,\mathrm{\,cos \,}\theta ``
    `` \,\mathrm{\,For \,}\,\mathrm{\,small \,}\,\mathrm{\,\theta \,},\,\mathrm{\,it \,}\,\mathrm{\,is \,}\,\mathrm{\,given \,}\,\mathrm{\,that \,}:``
    `` \,\mathrm{\,cos \,}\theta =1-\frac{{\theta }^{2}}{2}``
    `` \therefore T=\frac{0.1\times (1.4{)}^{2}}{1}+(0.1)\times 9.8\left(1-\frac{{\theta }^{2}}{2}\right)``
    `` =0.196+0.98\times \left(1-\frac{{\left(0.2\right)}^{2}}{2}\right)``
    `` =0.196+0.9604``
    `` =1.156\,\mathrm{\,N \,}\approx 1.16\,\mathrm{\,N \,}``
    Page No 115: