NEET-XII-Physics

47: The Special Theory of Relativity

with Solutions - page 2
Qstn# iv-5 Prvs-QstnNext-Qstn
  • #5
    An aeroplane travels over a rectangular field 100 m × 50 m, parallel to its length. What should be the speed of the plane so that the field becomes square in the plane frame?
    Ans : The rectangular field appears to be a square when the length becomes equal to the breadth, i.e. 50 m.
    Contracted length, L' = 50
    Original length, L = 100
    Let the speed of the aeroplane be v.
    Velocity of light, c = 3 × 108 m/s
    We know,
    `` L\text{'}=L\sqrt{1-{v}^{2}/{c}^{2}}``
    `` \Rightarrow 50=100\sqrt{1-{v}^{2}/{c}^{2}}``
    `` \Rightarrow {\left(1/2\right)}^{2}=1-{v}^{2}/{c}^{2}``
    `` \Rightarrow \frac{1}{4}=1-\frac{{v}^{2}}{{c}^{2}}``
    `` \Rightarrow \frac{1}{4}=\frac{{c}^{2}-{v}^{2}}{{c}^{2}}``
    `` \Rightarrow \frac{{c}^{2}}{4}={c}^{2}-{v}^{2}``
    `` \Rightarrow {v}^{2}={c}^{2}-\frac{{c}^{2}}{4}``
    `` \Rightarrow {v}^{2}=\frac{3{c}^{2}}{4}``
    `` \Rightarrow v=\frac{\sqrt{3}c}{2}=0.866c``
    Hence, the speed of the aeroplane should be equal to 0.866c, so that the field becomes square in the plane frame.
    Page No 458: