NEET-XII-Physics
46: The Nucleus
- #35-aPlot In (R0/R) against t. (b) From the slope of the best straight line through the points, find the decay constant λ. (c) Calculate the half-life t1/2. (b) From the slope of the best straight line through the points, find the decay constant λ. (c) Calculate the half-life t1/2.Ans : For t = 0,
`` \,\mathrm{\,ln\,}\left(\frac{{R}_{\mathit{0}}}{R}\right)=\,\mathrm{\,In\,}\left(\frac{30\times {10}^{9}}{30\times {10}^{9}}\right)=0``
`` ``
For t = 25 s,
`` \,\mathrm{\,ln\,}\left(\frac{{R}_{\mathit{0}}}{{R}_{\mathit{2}}}\right)=\,\mathrm{\,In\,}\left(\frac{30\times {10}^{9}}{16\times {10}^{9}}\right)=0.63``
For t = 50 s,
`` \,\mathrm{\,In\,}\left(\frac{{\mathit{R}}_{\mathit{0}}}{{\mathit{R}}_{\mathit{3}}}\right)=\,\mathrm{\,In\,}\left(\frac{30\times {10}^{9}}{8\times {10}^{9}}\right)=1.35``
For t = 75 s,
`` \,\mathrm{\,ln\,}\left(\frac{{R}_{0}}{{R}_{4}}\right)=\,\mathrm{\,In\,}\left(\frac{30\times {10}^{9}}{3.8\times {10}^{9}}\right)=2.06``
For t = 100 s,
`` \,\mathrm{\,In\,}\left(\frac{{R}_{0}}{{R}_{5}}\right)=\,\mathrm{\,In\,}\left(\frac{30\times {10}^{9}}{2\times {10}^{9}}\right)=2.7``
The required graph is shown below.
(b) Slope of the graph = 0.028
∴ Decay constant, `` \lambda `` = 0.028 min`` -1``
The half-life period`` \left({T}_{\frac{1}{2}}\right)`` is given by
`` {T}_{\frac{1}{2}}=\frac{0.693}{\lambda }``
`` =\frac{0.693}{0.028}=25\,\mathrm{\,min\,}``
Page No 443: (b) Slope of the graph = 0.028
∴ Decay constant, `` \lambda `` = 0.028 min`` -1``
The half-life period`` \left({T}_{\frac{1}{2}}\right)`` is given by
`` {T}_{\frac{1}{2}}=\frac{0.693}{\lambda }``
`` =\frac{0.693}{0.028}=25\,\mathrm{\,min\,}``
Page No 443:
- #35-bFrom the slope of the best straight line through the points, find the decay constant λ. (c) Calculate the half-life t1/2.Ans : Slope of the graph = 0.028
∴ Decay constant, `` \lambda `` = 0.028 min`` -1``
The half-life period`` \left({T}_{\frac{1}{2}}\right)`` is given by
`` {T}_{\frac{1}{2}}=\frac{0.693}{\lambda }``
`` =\frac{0.693}{0.028}=25\,\mathrm{\,min\,}``
Page No 443: