NEET-XII-Physics

46: The Nucleus

with Solutions - page 3
Qstn# iv-1 Prvs-QstnNext-Qstn
  • #1
    Assume that the mass of a nucleus is approximately given by M = Amp where A is the mass number. Estimate the density of matter in kgm-3 inside a nucleus. What is the specific gravity of nuclear matter?
    Ans : Given:
    Mass of the nucleus, M = Amp
    Volume of the nucleus, V = `` \frac{4}{3}\pi {{R}_{0}}^{3}A``
    Density of the matter, `` d=\frac{M}{V}=\frac{A{m}_{p}}{{\displaystyle \frac{4}{3}}\pi {{R}_{0}}^{3}A}``
    `` =\frac{3{m}_{p}}{4\times \pi {{R}_{0}}^{3}}``
    `` =\frac{3\times 1.007276}{4\times 3.14(1.1{)}^{3}}``
    `` =3\times {10}^{17}\,\mathrm{\,kg\,}/{\,\mathrm{\,m\,}}^{3}``
    Specific gravity of the nuclear matter = `` \frac{\,\mathrm{\,Density\,}\,\mathrm{\,of\,}\,\mathrm{\,matter\,}}{\,\mathrm{\,Density\,}\,\mathrm{\,of\,}\,\mathrm{\,water\,}}``
    `` \therefore `` Specific gravity = `` \frac{3\times {10}^{17}}{{10}^{3}}`` = 3 `` \times `` 1014 kg/m3
    Page No 442: