NEET-XII-Physics

43: Bohr's Model and Physics of the Atom

with Solutions - page 3
Qstn# iii-4 Prvs-QstnNext-Qstn
  • #4
    Let An be the area enclosed by the nth orbit in a hydrogen atom. The graph of ln (An/A1) against ln(n)
    (a) will pass through the origin
    (b) will be a straight line with slope 4
    (c) will be a monotonically increasing nonlinear curve
    (d) will be a circle
    digAnsr:   a,b
    Ans : (a) will pass through the origin
    (b) will be a straight line with slope 4
    The radius of the nth orbit of a hydrogen atom is given by
    `` {r}_{\,\mathrm{\,n\,}}={n}^{2}{a}_{0}``
    Area of the nth orbit is given by
    `` {A}_{\,\mathrm{\,n\,}}=\,\mathrm{\,\pi \,}{r}_{\,\mathrm{\,n\,}}^{2}=\,\mathrm{\,\pi \,}{n}^{4}{a}_{0}^{2}``
    `` {A}_{1}=\,\mathrm{\,\pi \,}{a}_{0}^{2}``
    `` \Rightarrow \,\mathrm{\,ln\,}\left(\frac{{A}_{\,\mathrm{\,n\,}}}{{A}_{1}}\right)=\,\mathrm{\,ln\,}\left(\frac{\,\mathrm{\,\pi \,}{n}^{4}{a}_{0}^{2}}{\,\mathrm{\,\pi \,}{a}_{0}^{2}}\right)``
    `` \,\mathrm{\,ln\,}\left(\frac{{A}_{\,\mathrm{\,n\,}}}{{A}_{1}}\right)=4\,\mathrm{\,ln\,}n...\left(1\right)``
    From the above expression, the graph of ln (An/A1) against ln(n) will be a straight line passing through the origin and having slope 4.
    Page No 384: