NEET-XII-Physics

42: Photoelectric Effect and Wave Particle Duality

with Solutions - page 3
Qstn# ii-14 Prvs-QstnNext-Qstn
  • #14
    A proton and an electron are accelerated by the same potential difference. Let λe and λp denote the de Broglie wavelengths of the electron and the proton, respectively.
    (a) λe = λp
    (b) λe < λp
    (c) λe > λp
    (d) The relation between λe and λp depends on the accelerating potential difference.
    digAnsr:   c
    Ans : (c) λe > λp
    Let me and mp be the masses of electron and proton, respectively.
    Let the applied potential difference be V.
    Thus, the de-Broglie wavelength of the electron,
    `` {\lambda }_{e}=\frac{h}{\sqrt{2{m}_{\,\mathrm{\,e\,}}eV}}...\left(1\right)``
    And de-Broglie wavelength of the proton,
    `` {\lambda }_{p}=\frac{h}{\sqrt{2{m}_{\,\mathrm{\,p\,}}eV}}...\left(2\right)``
    Dividing equation (2) by equation (1), we get:
    `` \frac{{\lambda }_{\,\mathrm{\,p\,}}}{{\lambda }_{\,\mathrm{\,e\,}}}=\frac{\sqrt{{m}_{\,\mathrm{\,e\,}}}}{\sqrt{{m}_{\,\mathrm{\,p\,}}}}``
    me < mp
    `` \therefore `` `` \frac{{\lambda }_{p}}{{\lambda }_{e}}<1``
    `` \Rightarrow {\lambda }_{p}<{\lambda }_{e}``
    Page No 364: