NEET-XII-Physics

42: Photoelectric Effect and Wave Particle Duality

with Solutions - page 2
Qstn# i-12-a Prvs-QstnNext-Qstn
  • #12-a
    the same speed (b) the same momentum (c) the same energy?
    Ans : It is given that the speed of an electron and proton are equal.
    It is clear from the above equation that
    `` \lambda \propto \frac{1}{m}``
    As mass of a proton, mp > mass of an electron, me, the proton will have a smaller wavelength compared to the electron. (b) `` \lambda =\frac{h}{p}`` `` \left(\because p=mv\right)``
    So, when the proton and the electron have same momentum, they will have the same wavelength. (c) de-Broglie wavelength `` \left(\lambda \right)`` is also given by
    `` \lambda =\frac{h}{\sqrt{2mE}}``,
    where E = energy of the particle.
    Let the energy of the proton and electron be E.
    Wavelength of the proton,
    `` {\lambda }_{p}=\frac{h}{\sqrt{2{m}_{\,\mathrm{\,p\,}}E}}...\left(1\right)``
    Wavelength of the electron,
    `` {\lambda }_{e}=\frac{h}{\sqrt{2{m}_{\,\mathrm{\,e\,}}E}}...\left(2\right)``
    Dividing (2) by (1), we get:
    `` \frac{{\lambda }_{e}}{{\lambda }_{p}}=\frac{\sqrt{{m}_{e}}}{\sqrt{{m}_{p}}}``
    `` \Rightarrow \frac{{\lambda }_{e}}{{\lambda }_{p}}<1``
    `` \Rightarrow {\lambda }_{e}<{\lambda }_{p}``
    It is clear that the proton will have smaller wavelength compared to the electron.
    Page No 363:
  • #12-b
    the same momentum
    Ans : `` \lambda =\frac{h}{p}`` `` \left(\because p=mv\right)``
    So, when the proton and the electron have same momentum, they will have the same wavelength.
  • #12-c
    the same energy?
    Ans : de-Broglie wavelength `` \left(\lambda \right)`` is also given by
    `` \lambda =\frac{h}{\sqrt{2mE}}``,
    where E = energy of the particle.
    Let the energy of the proton and electron be E.
    Wavelength of the proton,
    `` {\lambda }_{p}=\frac{h}{\sqrt{2{m}_{\,\mathrm{\,p\,}}E}}...\left(1\right)``
    Wavelength of the electron,
    `` {\lambda }_{e}=\frac{h}{\sqrt{2{m}_{\,\mathrm{\,e\,}}E}}...\left(2\right)``
    Dividing (2) by (1), we get:
    `` \frac{{\lambda }_{e}}{{\lambda }_{p}}=\frac{\sqrt{{m}_{e}}}{\sqrt{{m}_{p}}}``
    `` \Rightarrow \frac{{\lambda }_{e}}{{\lambda }_{p}}<1``
    `` \Rightarrow {\lambda }_{e}<{\lambda }_{p}``
    It is clear that the proton will have smaller wavelength compared to the electron.
    Page No 363: