NEET-XII-Physics

40: Electromagnetic Waves

with Solutions - page 4
Qstn# iv-1 Prvs-QstnNext-Qstn
  • #1
    Show that the dimensions of the displacement current
    ε0dφEdtare that of an electric current.
    Ans : Displacement current,
    `` {I}_{\,\mathrm{\,D\,}}=\frac{{\in }_{0}d{\phi }_{\,\mathrm{\,e\,}}}{dt}``
    Electric flux,
    `` {\varphi }_{\,\mathrm{\,e\,}}=EA``
    `` \left[{\varphi }_{e}\right]\mathit{=}\left[E\right]\left[A\right]``
    `` =\left[\frac{\mathit{1}}{\mathit{4}\pi {\mathit{\in }}_{\mathit{0}}}\frac{q}{{r}^{\mathit{2}}}\right]\left[A\right]``
    `` \,\mathrm{\,Also\,},\left[{\mathit{\in }}_{0}\right]=\left[{\,\mathrm{\,M\,}}^{-1}{\,\mathrm{\,L\,}}^{-3}{\,\mathrm{\,T\,}}^{4}{\,\mathrm{\,A\,}}^{2}\right]``
    `` \Rightarrow \left[{\varphi }_{\,\mathrm{\,e\,}}\right]=\left[{\,\mathrm{\,M\,}}^{1}{\,\mathrm{\,L\,}}^{3}{\,\mathrm{\,T\,}}^{-4}{\,\mathrm{\,A\,}}^{-2}\right]\left[\,\mathrm{\,AT\,}\right]\left[{\,\mathrm{\,L\,}}^{-2}\right]\left[{\,\mathrm{\,L\,}}^{2}\right]``
    `` =\left[{\,\mathrm{\,ML\,}}^{3}{\,\mathrm{\,T\,}}^{-3}{\,\mathrm{\,A\,}}^{-1}\right]``
    `` ``
    Displacement current,
    `` \left[{I}_{\,\mathrm{\,D\,}}\right]=\left[{\in }_{0}\right]\left[{\varphi }_{\,\mathrm{\,e\,}}\right]\left[{\,\mathrm{\,T\,}}^{-1}\right]``
    `` \left[{I}_{\,\mathrm{\,D\,}}\right]=\left[{\,\mathrm{\,M\,}}^{-1}{\,\mathrm{\,L\,}}^{-3}{\,\mathrm{\,T\,}}^{4}{\,\mathrm{\,A\,}}^{2}\right]\left[{\,\mathrm{\,ML\,}}^{3}{\,\mathrm{\,T\,}}^{-3}{\,\mathrm{\,A\,}}^{-1}\right]\left[{\,\mathrm{\,T\,}}^{-1}\right]``
    `` \left[{I}_{\,\mathrm{\,D\,}}\right]=\left[\,\mathrm{\,A\,}\right]``
    [ID]=[current]
    Page No 339: