NEET-XII-Physics

39: Alternating Current

with Solutions - page 3
Qstn# iv-10 Prvs-QstnNext-Qstn
  • #10
    A coil has a resistance of 10 Ω and an inductance of 0.4 henry. It is connected to an AC source of 6.5 V,
    30πHz. Find the average power consumed in the circuit.
    Ans : Given:
    Resistance of coil, R = 10 Ω
    Inductance of coil, L = 0.4 Henry
    Voltage of AC source, Erms = 6.5 V
    Frequency of AC source, `` f`` = `` \frac{30}{\,\mathrm{\,\pi \,}}\,\mathrm{\,Hz\,}``
    Reactance of resistance-inductance circuit `` \left(Z\right)`` is given by,
    Z = `` \sqrt{{R}^{2}+{{X}_{L}}^{2}}``
    Here, R = resistance of the circuit
    XL = Reactance of the pure inductive circuit
    Z = `` \sqrt{{R}^{2}+{\left(2\,\mathrm{\,\pi \,}fL\right)}^{2}}``
    = `` \sqrt{{\left(10\right)}^{2}+{\left(2\times \,\mathrm{\,\pi \,}\times \frac{30}{\,\mathrm{\,\pi \,}}\times 0.4\right)}^{2}}``
    Average power consumed in the circuit (P) is given by,
    P = ErmsIrmscos`` \varphi ``
    cos`` \varphi `` = `` \frac{R}{Z}``, Irms = `` \frac{{E}_{rms}}{Z}``
    `` ``
    `` \therefore P=6.5\times \frac{6.5}{Z}\times \frac{R}{Z}``
    `` \Rightarrow P=\frac{6.5\times 6.5\times 10}{{\left(\sqrt{{R}^{2}+{\left(\omega L\right)}^{2}}\right)}^{2}}``
    `` \Rightarrow P=\frac{6.5\times 6.5\times 10}{100+576}``
    `` \Rightarrow P=\frac{6.5\times 6.5\times 10}{676}``
    `` \Rightarrow P=0.625=\frac{5}{8}\,\mathrm{\,W\,}``
    Page No 330: