NEET-XII-Physics

39: Alternating Current

with Solutions - page 2
Qstn# ii-9 Prvs-QstnNext-Qstn
  • #9
    An alternating current is given by i = i1 cos ωt + i2 sin ωt. The rms current is given by
    (a)
    i1+i22
    (b)
    i1+i22
    (c)
    i12+i222
    (d)
    i12+i222
    digAnsr:   c
    Ans : (c) `` \sqrt{\frac{{i}_{1}^{2}+{i}_{2}^{2}}{2}}``
    Given:
    i = i1 cos ωt + i2 sin ωt
    The rms value of current is given by,
    `` {i}_{rms}=\sqrt{\frac{{\int }_{0}^{T}{i}^{2}dt}{{\int }_{0}^{T}dt}}``
    `` i={i}_{1}\,\mathrm{\,cos\,}\omega t+{i}_{2}\,\mathrm{\,sin\,}\omega t``
    `` ``
    `` {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{\int }_{0}^{T}{\left({i}_{1}\,\mathrm{\,cos\,}\omega t+{i}_{2}\,\mathrm{\,sin\,}\omega t\right)}^{2}dt}{{\int }_{0}^{T}dt}}``
    `` {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{\int }_{0}^{T}\left({i}_{1}^{2}{\,\mathrm{\,cos\,}}^{2}\omega t+{i}_{2}^{2}{\,\mathrm{\,sin\,}}^{2}\omega t+2{i}_{1}{i}_{2}\,\mathrm{\,sin\,}\,\mathrm{\,\omega t\,}\,\mathrm{\,cos\,}\omega t\right)dt}{{\int }_{0}^{T}dt}}``
    `` {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{\int }_{0}^{T}\left({i}_{1}^{2}{\displaystyle \frac{(\,\mathrm{\,cos\,}2\omega t+1)}{2}}+{i}_{2}^{2}{\displaystyle \frac{(1-\,\mathrm{\,cos\,}2\omega t)}{2}}+{i}_{1}{i}_{2}\,\mathrm{\,sin\,}2\omega t\right)dt}{{\int }_{0}^{T}dt}}``
    `` [\because {\,\mathrm{\,cos\,}}^{2}\omega t=\frac{(\,\mathrm{\,cos\,}2\omega t+1)}{2},{\,\mathrm{\,sin\,}}^{2}\omega t=\frac{(1-\,\mathrm{\,cos\,}2\omega t)}{2}]``
    `` ``
    `` ``
    We know that, T = 2π
    Integrating the above expression
    `` {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{\displaystyle \frac{1}{2}}{i}_{1}^{2}\left({\int }_{0}^{2\pi }1dt+{\int }_{0}^{2\pi }\,\mathrm{\,cos\,}2\omega tdt\right)+{i}_{2}^{2}\left({\int }_{0}^{2\pi }1dt-{\int }_{0}^{2\pi }\,\mathrm{\,cos\,}2\omega tdt\right)+{i}_{1}{i}_{2}{\int }_{0}^{2\pi }\,\mathrm{\,sin\,}2\omega tdt}{{\int }_{0}^{2\pi }dt}}``
    The following integrals become zero
    `` {\int }_{0}^{2\pi }\,\mathrm{\,cos\,}2\omega tdt=0={\int }_{0}^{2\pi }\,\mathrm{\,sin\,}2\omega tdt``
    `` ``
    Therefore, it becomes
    `` {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{\displaystyle \frac{{i}_{1}^{2}}{2}}\left({\int }_{0}^{2\,\mathrm{\,\pi \,}}1dt\right)+{\displaystyle \frac{{i}_{2}^{2}}{2}}\left({\int }_{0}^{2\,\mathrm{\,\pi \,}}1dt\right)}{{\int }_{0}^{2\pi }dt}}``
    `` {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{\displaystyle \frac{{i}_{1}^{2}}{2}}\times 2\,\mathrm{\,\pi \,}+{\displaystyle \frac{{i}_{2}^{2}}{2}}\times 2\,\mathrm{\,\pi \,}}{2\,\mathrm{\,\pi \,}}}``
    `` \Rightarrow {i}_{\,\mathrm{\,rms\,}}=\sqrt{\frac{{i}_{1}^{2}+{i}_{2}^{2}}{2}}``
    Page No 329: