NEET-XII-Physics

38: Electromagnetic Induction

with Solutions - page 4
Qstn# iv-8 Prvs-QstnNext-Qstn
  • #8
    A conducting loop of area 5.0 cm2 is placed in a magnetic field which varies sinusoidally with time as B = B0 sin ωt where B0 = 0.20 T and ω = 300 s-1. The normal to the coil makes an angle of 60° with the field. Find (a) the maximum emf induced in the coil, (b) the emf induced at τ = (π/900)s and (c) the emf induced at t = (π/600) s. (a) the maximum emf induced in the coil, (b) the emf induced at τ = (π/900)s and (c) the emf induced at t = (π/600) s.
    Ans : Given:
    Area of the coil, A = 5 cm2 = 5 × 10-4 m2
    The magnetic field at time t is given by
    B = B0 sin ωt = 0.2 sin (300t)
    Angle of the normal of the coil with the magnetic field, θ = 60° (a) The emf induced in the coil is given by
    `` e=\frac{-d\theta }{dt}=\frac{d}{dt}(BA\,\mathrm{\,cos\,}\theta )``
    `` =\frac{d}{dt}\left[\left({B}_{0}\,\mathrm{\,sin\,}\,\mathrm{\,\omega \,}t\right)\times 5\times {10}^{-4}\times 1/2\right]``
    `` ={B}_{0}\times \frac{5}{2}\times {10}^{-4}\frac{d}{dt}(\,\mathrm{\,sin\,}\,\mathrm{\,\omega \,}t)``
    `` =\frac{{B}_{0}5}{2}{10}^{-4}\omega \left(\,\mathrm{\,cos\,}\,\mathrm{\,\omega \,}t\right)``
    `` =\frac{0.2\times 5}{2}\times 300\times {10}^{-4}\times \,\mathrm{\,cos\,}\,\mathrm{\,\omega \,}t``
    `` =15\times {10}^{-3}\,\mathrm{\,cost\,}\,\mathrm{\,\omega \,}t``
    The induced emf becomes maximum when cos ωt becomes maximum, that is, 1.
    Thus, the maximum value of the induced emf is given by
    `` {e}_{max}=15\times {10}^{-3}=0.015\,\mathrm{\,V\,}`` (b) The induced emf at t = `` \left(\frac{\,\mathrm{\,\pi \,}}{900}\right)\,\mathrm{\,s\,}`` is given by
    e = 15 × 10-3 × cos ωt
    = 15 × 10-3 × cos `` \left(300\times \frac{\,\mathrm{\,\pi \,}}{900}\right)``
    = 15 × 10-3 × `` \frac{1}{2}``
    `` =\frac{0.015}{2}=0.0075=7.5\times {10}^{-3}\,\mathrm{\,V\,}`` (c) The induced emf at t = `` \frac{\,\mathrm{\,\pi \,}}{600}\,\mathrm{\,s\,}`` is given by
    e = 15 × 10-3 × cos `` \left(300\times \frac{\,\mathrm{\,\pi \,}}{600}\right)``
    = 15 × 10-3 × 0 = 0 V
    Page No 306: (a) The emf induced in the coil is given by
    `` e=\frac{-d\theta }{dt}=\frac{d}{dt}(BA\,\mathrm{\,cos\,}\theta )``
    `` =\frac{d}{dt}\left[\left({B}_{0}\,\mathrm{\,sin\,}\,\mathrm{\,\omega \,}t\right)\times 5\times {10}^{-4}\times 1/2\right]``
    `` ={B}_{0}\times \frac{5}{2}\times {10}^{-4}\frac{d}{dt}(\,\mathrm{\,sin\,}\,\mathrm{\,\omega \,}t)``
    `` =\frac{{B}_{0}5}{2}{10}^{-4}\omega \left(\,\mathrm{\,cos\,}\,\mathrm{\,\omega \,}t\right)``
    `` =\frac{0.2\times 5}{2}\times 300\times {10}^{-4}\times \,\mathrm{\,cos\,}\,\mathrm{\,\omega \,}t``
    `` =15\times {10}^{-3}\,\mathrm{\,cost\,}\,\mathrm{\,\omega \,}t``
    The induced emf becomes maximum when cos ωt becomes maximum, that is, 1.
    Thus, the maximum value of the induced emf is given by
    `` {e}_{max}=15\times {10}^{-3}=0.015\,\mathrm{\,V\,}`` (b) The induced emf at t = `` \left(\frac{\,\mathrm{\,\pi \,}}{900}\right)\,\mathrm{\,s\,}`` is given by
    e = 15 × 10-3 × cos ωt
    = 15 × 10-3 × cos `` \left(300\times \frac{\,\mathrm{\,\pi \,}}{900}\right)``
    = 15 × 10-3 × `` \frac{1}{2}``
    `` =\frac{0.015}{2}=0.0075=7.5\times {10}^{-3}\,\mathrm{\,V\,}`` (c) The induced emf at t = `` \frac{\,\mathrm{\,\pi \,}}{600}\,\mathrm{\,s\,}`` is given by
    e = 15 × 10-3 × cos `` \left(300\times \frac{\,\mathrm{\,\pi \,}}{600}\right)``
    = 15 × 10-3 × 0 = 0 V
    Page No 306:
  • #8-a
    the maximum emf induced in the coil,
    Ans : The emf induced in the coil is given by
    `` e=\frac{-d\theta }{dt}=\frac{d}{dt}(BA\,\mathrm{\,cos\,}\theta )``
    `` =\frac{d}{dt}\left[\left({B}_{0}\,\mathrm{\,sin\,}\,\mathrm{\,\omega \,}t\right)\times 5\times {10}^{-4}\times 1/2\right]``
    `` ={B}_{0}\times \frac{5}{2}\times {10}^{-4}\frac{d}{dt}(\,\mathrm{\,sin\,}\,\mathrm{\,\omega \,}t)``
    `` =\frac{{B}_{0}5}{2}{10}^{-4}\omega \left(\,\mathrm{\,cos\,}\,\mathrm{\,\omega \,}t\right)``
    `` =\frac{0.2\times 5}{2}\times 300\times {10}^{-4}\times \,\mathrm{\,cos\,}\,\mathrm{\,\omega \,}t``
    `` =15\times {10}^{-3}\,\mathrm{\,cost\,}\,\mathrm{\,\omega \,}t``
    The induced emf becomes maximum when cos ωt becomes maximum, that is, 1.
    Thus, the maximum value of the induced emf is given by
    `` {e}_{max}=15\times {10}^{-3}=0.015\,\mathrm{\,V\,}``
  • #8-b
    the emf induced at τ = (π/900)s and
    Ans : The induced emf at t = `` \left(\frac{\,\mathrm{\,\pi \,}}{900}\right)\,\mathrm{\,s\,}`` is given by
    e = 15 × 10-3 × cos ωt
    = 15 × 10-3 × cos `` \left(300\times \frac{\,\mathrm{\,\pi \,}}{900}\right)``
    = 15 × 10-3 × `` \frac{1}{2}``
    `` =\frac{0.015}{2}=0.0075=7.5\times {10}^{-3}\,\mathrm{\,V\,}``
  • #8-c
    the emf induced at t = (π/600) s.
    Ans : The induced emf at t = `` \frac{\,\mathrm{\,\pi \,}}{600}\,\mathrm{\,s\,}`` is given by
    e = 15 × 10-3 × cos `` \left(300\times \frac{\,\mathrm{\,\pi \,}}{600}\right)``
    = 15 × 10-3 × 0 = 0 V
    Page No 306: