NEET-XII-Physics

38: Electromagnetic Induction

with Solutions - page 10
Qstn# iv-41 Prvs-QstnNext-Qstn
  • #41
    A wire ab of length l, mass m and resistance R slides on a smooth, thick pair of metallic rails joined at the bottom as shown in figure. The plane of the rails makes an angle θ with the horizontal. A vertical magnetic field B exists in the region. If the wire slides on the rails at a constant speed v, show that
    B=mg R sinθvl2cos2 θFigure
    Ans :
    Component of weight along its motion, F' = mgsinθ
    The emf induced in the rod due to its motion is given by
    e = Bl'v'
    Here,
    l' = Component of the length of the rod perpendicular to the magnetic field
    v' = Component of the velocity of the rod perpendicular to the magnetic field
    `` i=\frac{B\times l\times v\,\mathrm{\,cos\theta \,}}{R}``
    `` \left|\stackrel{\to }{F}\right|=i\left|\stackrel{\to }{l}\times \stackrel{\to }{B}\right|=ilB\,\mathrm{\,sin\,}(90-\theta )``
    `` F=ilB=\frac{Blv\,\mathrm{\,cos\,}\theta }{R}\times l\times B\,\mathrm{\,cos\,}\theta ``
    `` F=\frac{{B}^{2}{l}^{2}v{\,\mathrm{\,cos\,}}^{2}\theta }{R}``
    `` ``
    The direction of force F is opposite to F.'
    Because the rod is moving with a constant velocity, the net force on it is zero.
    Thus,
    F `` -`` F' = 0
    F = F'
    or
    `` \frac{{B}^{2}{l}^{2}v{\,\mathrm{\,cos\,}}^{2}\,\mathrm{\,\theta \,}}{R}=mg\,\mathrm{\,sin\,}\theta ``
    `` \therefore B=\sqrt{\frac{Rmg\,\mathrm{\,sin\,}\theta }{{l}^{2}v{\,\mathrm{\,cos\,}}^{2}\theta }}``
    Page No 309: