NEET-XII-Physics

36: Permanent Magnets

with Solutions - page 4
Qstn# iv-6 Prvs-QstnNext-Qstn
  • #6
    Show that the magnetic field at a point due to a magnetic dipole is perpendicular to the magnetic axis if the line joining the point with the centre of the dipole makes an angle of
    tan-1 2with the magnetic axis.
    Ans : Given:
    Angle made by observation point P with the axis of the dipole, `` \theta `` = `` {\,\mathrm{\,tan\,}}^{-1}\left(\sqrt{2}\right)``
    `` \Rightarrow \,\mathrm{\,tan\,}\theta =\sqrt{2}``
    `` \Rightarrow 2={\,\mathrm{\,tan\,}}^{2}\theta ``
    `` \Rightarrow \,\mathrm{\,tan\,}\theta =\,\mathrm{\,cot\,}\theta ``
    `` \Rightarrow \frac{\,\mathrm{\,tan\,}\theta }{2}=\,\mathrm{\,cot\,}\theta ....\left(1\right)``
    `` \,\mathrm{\,We\,}\,\mathrm{\,know\,},``
    `` \frac{\,\mathrm{\,tan\,}\theta }{2}=\,\mathrm{\,tan\,}\alpha ....\left(2\right)``

    On comparing (1) and (2), we get
    tan α = cot θ
    `` \Rightarrow ``tan α = tan (90 - θ)
    `` \Rightarrow ``α = 90 - θ
    `` \Rightarrow ``θ + α = 90°
    Hence, the magnetic field due to the dipole is perpendicular to the magnetic axis.
    Page No 277: