NEET-XII-Physics

32: Electric Current in Conductors

with Solutions - page 5
Qstn# iv-21 Prvs-QstnNext-Qstn
  • #21
    Consider N = n1n2 identical cells, each of emf ε and internal resistance r. Suppose n1 cells are joined in series to form a line and n2 such lines are connected in parallel.
    The combination drives a current in an external resistance R. (a) Find the current in the external resistance. (b) Assuming that n1 and n2 can be continuously varied, find the relation between n1, n2, R and r for which the current in R is maximum. (a) Find the current in the external resistance. (b) Assuming that n1 and n2 can be continuously varied, find the relation between n1, n2, R and r for which the current in R is maximum.
    Ans : (a)
    Given:
    Emf of one cell = E
    ∴ Total e.m.f. of n1 cells in one row = n1E
    Total emf of one row will be equal to the net emf across all the n2 rows because of parallel connection.
    Total resistance in one row = n1r
    Total resistance of n2 rows in parallel `` =\frac{{n}_{1}r}{{n}_{2}}``
    Net resistance of the circuit = R + `` \frac{{n}_{1}r}{{n}_{2}}``
    `` \therefore \,\mathrm{\,Current\,},I=\frac{{n}_{1}E}{R+{\displaystyle \frac{{n}_{1}r}{{n}_{2}}}}=\frac{{n}_{1}{n}_{2}\,\mathrm{\,E\,}}{{n}_{2}\,\mathrm{\,R\,}+{n}_{1}r}`` (b) From
    (a),
    `` I=\frac{{n}_{1}{n}_{2}\,\mathrm{\,E\,}}{{n}_{2}\,\mathrm{\,R\,}+{n}_{1}r}``
    For I to be maximum, (n1r + n2R) should be minimum
    `` \Rightarrow {\left(\sqrt{{n}_{1}r}-\sqrt{{n}_{2}\,\mathrm{\,R\,}}\right)}^{2}+2\sqrt{{n}_{1}\,\mathrm{\,R\,}{n}_{2}r}=\,\mathrm{\,min\,}``
    It is minimum when
    `` \sqrt{{n}_{1}r}=\sqrt{{n}_{2}\,\mathrm{\,R\,}}``
    `` {n}_{1}r={n}_{2}\,\mathrm{\,R\,}``
    ∴ I is maximum when n1r = n2R .
    Page No 199: (a)
    Given:
    Emf of one cell = E
    ∴ Total e.m.f. of n1 cells in one row = n1E
    Total emf of one row will be equal to the net emf across all the n2 rows because of parallel connection.
    Total resistance in one row = n1r
    Total resistance of n2 rows in parallel `` =\frac{{n}_{1}r}{{n}_{2}}``
    Net resistance of the circuit = R + `` \frac{{n}_{1}r}{{n}_{2}}``
    `` \therefore \,\mathrm{\,Current\,},I=\frac{{n}_{1}E}{R+{\displaystyle \frac{{n}_{1}r}{{n}_{2}}}}=\frac{{n}_{1}{n}_{2}\,\mathrm{\,E\,}}{{n}_{2}\,\mathrm{\,R\,}+{n}_{1}r}`` (b) From
    (a),
    `` I=\frac{{n}_{1}{n}_{2}\,\mathrm{\,E\,}}{{n}_{2}\,\mathrm{\,R\,}+{n}_{1}r}``
    For I to be maximum, (n1r + n2R) should be minimum
    `` \Rightarrow {\left(\sqrt{{n}_{1}r}-\sqrt{{n}_{2}\,\mathrm{\,R\,}}\right)}^{2}+2\sqrt{{n}_{1}\,\mathrm{\,R\,}{n}_{2}r}=\,\mathrm{\,min\,}``
    It is minimum when
    `` \sqrt{{n}_{1}r}=\sqrt{{n}_{2}\,\mathrm{\,R\,}}``
    `` {n}_{1}r={n}_{2}\,\mathrm{\,R\,}``
    ∴ I is maximum when n1r = n2R .
    Page No 199:
  • #21-a
    Find the current in the external resistance.
    Ans :
    Given:
    Emf of one cell = E
    ∴ Total e.m.f. of n1 cells in one row = n1E
    Total emf of one row will be equal to the net emf across all the n2 rows because of parallel connection.
    Total resistance in one row = n1r
    Total resistance of n2 rows in parallel `` =\frac{{n}_{1}r}{{n}_{2}}``
    Net resistance of the circuit = R + `` \frac{{n}_{1}r}{{n}_{2}}``
    `` \therefore \,\mathrm{\,Current\,},I=\frac{{n}_{1}E}{R+{\displaystyle \frac{{n}_{1}r}{{n}_{2}}}}=\frac{{n}_{1}{n}_{2}\,\mathrm{\,E\,}}{{n}_{2}\,\mathrm{\,R\,}+{n}_{1}r}``
  • #21-b
    Assuming that n1 and n2 can be continuously varied, find the relation between n1, n2, R and r for which the current in R is maximum.
    Ans : From
    (a),
    `` I=\frac{{n}_{1}{n}_{2}\,\mathrm{\,E\,}}{{n}_{2}\,\mathrm{\,R\,}+{n}_{1}r}``
    For I to be maximum, (n1r + n2R) should be minimum
    `` \Rightarrow {\left(\sqrt{{n}_{1}r}-\sqrt{{n}_{2}\,\mathrm{\,R\,}}\right)}^{2}+2\sqrt{{n}_{1}\,\mathrm{\,R\,}{n}_{2}r}=\,\mathrm{\,min\,}``
    It is minimum when
    `` \sqrt{{n}_{1}r}=\sqrt{{n}_{2}\,\mathrm{\,R\,}}``
    `` {n}_{1}r={n}_{2}\,\mathrm{\,R\,}``
    ∴ I is maximum when n1r = n2R .
    Page No 199: