NEET-XII-Physics

31: Capacitors

with Solutions - page 3
Qstn# iv-3 Prvs-QstnNext-Qstn
  • #3
    Suppose, one wishes to construct a 1⋅0 farad capacitor using circular discs. If the separation between the discs be kept at 1⋅0 mm, what would be the radius of the discs?
    Ans : The capacitance of a parallel-plate capacitor is given by
    `` C=\frac{{\in }_{0}A}{d}``
    Here,
    A = Area of the plate
    d = Distance between the parallel plates
    Now,
    Let the radius of the disc be r.
    `` \therefore C=\frac{{\in }_{0}A}{d}=\frac{{\in }_{0}\left(\,\mathrm{\,\pi \,}{r}^{2}\right)}{d}``
    `` \Rightarrow r=\sqrt{\frac{Cd}{{\in }_{0}\,\mathrm{\,\pi \,}}}``
    `` \Rightarrow r=\sqrt{\frac{1\times (1\times {10}^{-3})}{8.85\times {10}^{-12}\times 3.14}}=\sqrt{35.98\times {10}^{6}}\,\mathrm{\,m\,}``
    `` ``
    `` \Rightarrow r\approx \sqrt{36\times {10}^{6}}\,\mathrm{\,m\,}=6\times {10}^{3}\,\mathrm{\,m\,}=6\,\mathrm{\,km\,}``
    `` ``
    Thus, the radius of the plates of the capacitor for the given configuration is 6 km.
    Page No 165: