NEET-XII-Physics
24: Kinetic Theory of Gases
- #24Oxygen is filled in a closed metal jar of volume 1.0 × 10-3 m3 at a pressure of 1.5 × 105 Pa and temperature 400 K. The jar has a small leak in it. The atmospheric pressure is 1.0 × 105 Pa and the atmospheric temperature is 300 K. Find the mass of the gas that leaks out by the time the pressure and the temperature inside the jar equalise with the surrounding.Ans : `` \begin{array}{l}\text{Here,}\\ {V}_{1}=1.0\times {10}^{-3}{m}^{3}\\ {T}_{1}=400K\\ {P}_{1}=1.5\times {10}^{5}Pa\\ {P}_{2}=1.0\times {10}^{5}Pa\\ {T}_{2}=300\\ M=32g\\ \text{Number of moles in the jar before}{n}_{1}\text{=}\frac{{P}_{1}{V}_{1}}{R{T}_{1}}\\ \text{Volume of the gas when pressure becomes equal to external pressure is given by}\\ \frac{{P}_{1}{V}_{1}}{{T}_{1}}=\frac{{P}_{2}{V}_{2}}{{T}_{2}}\\ \Rightarrow {V}_{2}=\frac{{P}_{1}{V}_{1}{T}_{2}}{{P}_{2}{T}_{1}}\\ \Rightarrow {V}_{2}=\frac{1.5\times {10}^{5}\times 1.0\times {10}^{-3}\times 300}{1.0\times {10}^{5}\times 400}=1.125\times {10}^{-3}\\ \text{Net volume of leaked gas =}{V}_{2}-{V}_{1}\\ =1.125\times {10}^{-3}-1.0\times {10}^{-3}\\ =1.25\times {10}^{-4}{\text{m}}^{3}\\ {\text{Let n}}_{2}\text{be the number of moles of leaked gas.}\,\mathrm{\,Applying\; equation\; of\; state\; on\; this\; amount\; of\; gas,\,}\,\mathrm{\,we\,}\,\mathrm{\,get\,}\\ \\ {n}_{2}=\frac{{P}_{2}{V}_{2}}{R{T}_{2}}=\frac{1.0\times {10}^{5}\times 1.25\times {10}^{-4}}{8.3\times 300}=0.005\\ \text{Mass of leaked gas= 32}\times \text{0}\text{.005=0}\text{.16 g}\end{array}``
Page No 35: