NEET-XII-Physics

24: Kinetic Theory of Gases

with Solutions - page 5
Qstn# iv-17 Prvs-QstnNext-Qstn
  • #17
    The mean speed of the molecules of a hydrogen sample equals the mean speed of the molecules of a helium sample. Calculate the ratio of the temperature of the hydrogen sample to the temperature of the helium sample.
    Ans : Mean velocity is given by
    `` {V}_{avg}=\sqrt{\frac{8RT}{\pi M}}``
    Let temperature for H and He respectively be T​1 and T2, respectively.
    For hydrogen:
    MH = 2g = 2`` \times ``10-3 kg
    For helium:
    MHe= 4 g = 4`` \times ``10-3 kg
    Now,
    A/q`` \sqrt{\frac{8R{T}_{1}}{\pi {M}_{H}}}=\sqrt{\frac{8R{T}_{2}}{\pi {M}_{He}}}``
    `` \Rightarrow \sqrt{\frac{8R{T}_{1}}{2\times {10}^{-3}\pi }}=\sqrt{\frac{8R{T}_{2}}{\pi \times 4\times {10}^{-3}}}``
    `` \Rightarrow \sqrt{\frac{{T}_{1}}{2}}=\sqrt{\frac{{T}_{2}}{4}}``
    `` \Rightarrow \frac{{T}_{1}}{{T}_{2}}=\frac{1}{2}``
    `` \Rightarrow {T}_{1}:{T}_{2}=1:2``