ICSE-VIII-Mathematics
20: Area of Trapezium and a Polygon Class 8 Maths
- #12-iperimeters of the original rectangle and the resulting rectangle. (ii) areas of the original rectangle and the resulting rectangle. (ii) areas of the original rectangle and the resulting rectangle. (ii) areas of the original rectangle and the resulting rectangle.Ans : Perimeter P = 2(x + y)
Again, new length = 2x
New breadth = 2y
∴ New perimeter P’ = 2(2x + 2y)
= 4(x + y)
= 2.2(x + y)
= 2P
∴ P/P’ = ½
i.e. P : P’
= 1 : 2 (ii) Area A = xy
New Area A’ = (2x)(2y) = 4xy
= 4A
∴ A/A’ = ¼
i.e., A : A’
= 1 : 4 (ii) Area A = xy
New Area A’ = (2x)(2y) = 4xy
= 4A
∴ A/A’ = ¼
i.e., A : A’
= 1 : 4 (ii) Area A = xy
New Area A’ = (2x)(2y) = 4xy
= 4A
∴ A/A’ = ¼
i.e., A : A’
= 1 : 4
- #12-iiareas of the original rectangle and the resulting rectangle.Ans : Area A = xy
New Area A’ = (2x)(2y) = 4xy
= 4A
∴ A/A’ = ¼
i.e., A : A’
= 1 : 4