ICSE-VIII-Mathematics

20: Area of Trapezium and a Polygon Class 8 Maths

with Solutions - page 3
Qstn# B-12 Prvs-QstnNext-Qstn
  • #12
    Each side of a rectangle is doubled. Find the ratio between : (i) perimeters of the original rectangle and the resulting rectangle. (ii) areas of the original rectangle and the resulting rectangle. (i) perimeters of the original rectangle and the resulting rectangle. (ii) areas of the original rectangle and the resulting rectangle.
    Ans : Let length of the rectangle = x
    and breadth of the rectangle = y (i) Perimeter P = 2(x + y)
    Again, new length = 2x
    New breadth = 2y
    ∴ New perimeter P’ = 2(2x + 2y)
    = 4(x + y)
    = 2.2(x + y)
    = 2P
    ∴ P/P’ = ½
    i.e. P : P’
    = 1 : 2 (ii) Area A = xy
    New Area A’ = (2x)(2y) = 4xy
    = 4A
    ∴ A/A’ = ¼
    i.e., A : A’
    = 1 : 4 (i) Perimeter P = 2(x + y)
    Again, new length = 2x
    New breadth = 2y
    ∴ New perimeter P’ = 2(2x + 2y)
    = 4(x + y)
    = 2.2(x + y)
    = 2P
    ∴ P/P’ = ½
    i.e. P : P’
    = 1 : 2 (ii) Area A = xy
    New Area A’ = (2x)(2y) = 4xy
    = 4A
    ∴ A/A’ = ¼
    i.e., A : A’
    = 1 : 4
  • #12-i
    perimeters of the original rectangle and the resulting rectangle.
    Ans : Perimeter P = 2(x + y)
    Again, new length = 2x
    New breadth = 2y
    ∴ New perimeter P’ = 2(2x + 2y)
    = 4(x + y)
    = 2.2(x + y)
    = 2P
    ∴ P/P’ = ½
    i.e. P : P’
    = 1 : 2
  • #12-ii
    areas of the original rectangle and the resulting rectangle.
    Ans : Area A = xy
    New Area A’ = (2x)(2y) = 4xy
    = 4A
    ∴ A/A’ = ¼
    i.e., A : A’
    = 1 : 4