ICSE-VIII-Mathematics
19: Representing 3-D in 2-D Class 8 Maths
Note: Please signup/signin free to get personalized experience.
Note: Please signup/signin free to get personalized experience.
10 minutes can boost your percentage by 10%
Note: Please signup/signin free to get personalized experience.
- #Exercise 19
- Qstn #1If a polyhedron has 8 faces and 8 vertices, find the number of edges in it.Ans : Faces = 8
Vertices = 8
using Eulers formula,
F + V - E = 2
⇒ 8 + 8 - E = 2
⇒ -E = 2 - 16
⇒ E= 14
- Qstn #2If a polyhedron has 10 vertices and 7 faces, find the number of edges in it.Ans : Vertices = 10
Faces = 7
Using Eulers formula,
F + V - E = 2
⇒ 7 + 10 - E = 2
⇒ -E = -15
⇒ E = 15
- #3-i(a) pentagonal pyramidAns : A pentagonal pyramid
Number of faces = 6
Number of vertices = 6
Number of edges = 10
- #3-ii(a) hexagonal prismAns : A hexagonal prism
Number of faces = 8
Number of vertices = 12
Number of edges = 18
- Qstn #4Verily Euler’s formula for the following three dimensional figures:
Ans : (i) Number of vertices = 6
Number of faces = 8
Number of edges = 12
Using Euler formula,
F + V - E = 2
⇒ 8 + 6 - 12 = 2
⇒ 2 = 2Hence, proved.
(ii) Number of vertices = 9
Number of faces = 8
Number of edges = 15
Using, Euler’s formula,
F + V - E = 2
⇒ 9 + 8 - 15 = 2
⇒ 2 = 2Hence, proved.
(iii) Number of vertices = 9
Number of faces = 5
Number of edges = 12
Using, Euler’s formula,
F + V - E = 2
⇒ 9 + 5 - 12 = 2
⇒ 2 = 2Hence, proved.
- Qstn #5Can a polyhedron have 8 faces, 26 edges and 16 vertices?Ans : Number of faces = 8
Number of vertices = 16
Number of edges = 26
Using Euler’s formula
F + V - E
⇒ 8 + 16 - 26 ≠-2
⇒ -2 ≠2
No, a polyhedron cannot have 8 faces, 26 edges and 16 vertices.
- #6-i3 triangles only?Ans : No
- #6-ii4 triangles only?Ans : Yes
- #6-iii(a) square and four triangles?Ans : Yes
- Qstn #7Using Euler’s formula, find the values of x, y, z.
dlt27434771601738719810">
Faces
Vertices
Edges
- #7-ix
15
20Ans : F + V - E = 2
⇒ x + 15 - 20 = 2
⇒ x - 5 = 2
⇒ = 2 + 5 = 7
- #7-ii6
y
8Ans : F + V - E = 2
⇒ 15 + y - 26 = 2
⇒ y - 11 = 2
⇒ y = 2 + 11
⇒ y = 13