ICSE-VIII-Mathematics

15: Linear Inequations Class 8 Maths

with Solutions -
  • #1
    If the replacement set is the set of natural numbers, solve. (i) x - 5 < 0 (ii) x + 1 < 7 (iii) 3x - 4 > 6 (iv) 4x + 1 > 17
    Ans : (i) x - 5 < 0
    ⇒ x - 5 + 5 < 0 + 5 ...(Adding 5)
    ⇒ x < 5
    Required answer = {1, 2, 3, 4} (ii) x + 1 ≤ 7⇒ x + 1 - 1 ≤ 7 - 1 (Subtracting 1)
    ⇒ x ≤ 6
    Required answer = {1, 2, 3, 4, 5, 6} (iii) 3x - 4 > 6
    3x - 4 + 4 > 6 + 4 (Adding 4)
    ⇒ 3x > 10
    ⇒ 3x/3 > 10/3 ...(Dividing by 3)
    ⇒ x > 10/3
    ⇒ x > 3 1/3
    Required answer = {4, 5, 6, ...} (iv) 4x + 1 ≥ 17
    ⇒ 4x + 1 - 1 ≥ 17 - 1 (Subtracting)
    ⇒ 4x ≥ 16
    ⇒ 4x/4 ≥ 16/4 (Dividing by 4)
    ⇒ x ≥ 4
    Required answer = {4, 5, 6, ...}
  • #1-i
    x - 5 < 0
    Ans : x - 5 < 0
    ⇒ x - 5 + 5 < 0 + 5 ...(Adding 5)
    ⇒ x < 5
    Required answer = {1, 2, 3, 4}
  • #1-ii
    x + 1 < 7
    Ans : x + 1 ≤ 7⇒ x + 1 - 1 ≤ 7 - 1 (Subtracting 1)
    ⇒ x ≤ 6
    Required answer = {1, 2, 3, 4, 5, 6}
  • #1-iii
    3x - 4 > 6
    Ans : 3x - 4 > 6
    3x - 4 + 4 > 6 + 4 (Adding 4)
    ⇒ 3x > 10
    ⇒ 3x/3 > 10/3 ...(Dividing by 3)
    ⇒ x > 10/3
    ⇒ x > 3 1/3
    Required answer = {4, 5, 6, ...}
  • #1-iv
    4x + 1 > 17
    Ans : 4x + 1 ≥ 17
    ⇒ 4x + 1 - 1 ≥ 17 - 1 (Subtracting)
    ⇒ 4x ≥ 16
    ⇒ 4x/4 ≥ 16/4 (Dividing by 4)
    ⇒ x ≥ 4
    Required answer = {4, 5, 6, ...}