CBSE-XI-Physics

47: The Special Theory of Relativity

with Solutions -
Qstn# ii-5 Prvs-QstnNext-Qstn
  • #5
    If the speed of a particle moving at a relativistic speed is doubled, its linear momentum will
    (a) become double
    (b) become more than double
    (c) remain equal
    (d) become less than double.
    digAnsr:   b
    Ans : (b) becomes more than double
    If a particle is moving at a relativistic speed v, its linear momentum `` \left(p\right)`` is given as,
    `` p=\frac{{m}_{o}v}{\sqrt{1-{\displaystyle \frac{{v}^{2}}{{c}^{2}}}}}``
    `` \Rightarrow p={m}_{o}v{\left(1-\frac{{v}^{2}}{{c}^{2}}\right)}^{\raisebox{1ex}{$-1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}``
    `` ``
    Expanding binomially and neglecting higher terms we have,
    `` p\simeq {m}_{o}v\left(1+\frac{{v}^{2}}{2{c}^{2}}\right)``
    `` \Rightarrow p\simeq {m}_{o}v+\frac{{m}_{o}{v}^{3}}{2{c}^{2}}``
    If the speed is doubled, such that it is travelling with speed 2v ,linear momentum will be given as
    `` p\text{'}=\frac{{m}_{o}\left(2v\right)}{\sqrt{1-{\displaystyle \frac{4{v}^{2}}{{c}^{2}}}}}``
    `` \Rightarrow p\text{'}=2{m}_{o}v{\left(1-\frac{4{v}^{2}}{{c}^{2}}\right)}^{\raisebox{1ex}{$-1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.}``
    `` ``
    Expanding binomially and neglecting higher terms we have,
    `` p\text{'}\simeq 2{m}_{o}v\left(1+\frac{4{v}^{2}}{2{c}^{2}}\right)``
    `` \Rightarrow p\text{'}\simeq 2{m}_{o}v+\frac{4{m}_{o}{v}^{3}}{{c}^{2}}``
    `` \therefore p\text{'}\simeq 2p+\frac{3{m}_{o}{v}^{3}}{{c}^{2}},\frac{3{m}_{o}{v}^{3}}{{c}^{2}}>0``
    Therefore, p' is more than double of p.
    Page No 457: