CBSE-XI-Physics
47: The Special Theory of Relativity
- #26Find the speed of an electron with kinetic energy (a) 1 eV, (b) 10 keV and (c) 10 MeV.Ans : If m0 is the rest mass of an electron and c is the speed of light, then kinetic energy of the electron = mc2 - m0c2 ...(1)
If `` m=\frac{{m}_{0}{c}^{2}}{\sqrt{1-{v}^{2}/{c}^{2}}}``, then (a) Kinetic energy of electron = 1 eV = `` 1.6\times {10}^{-19}\,\mathrm{\,J\,}``
From eq. (1), we get
`` 1.6\times {10}^{-19}=\frac{{m}_{0}{c}^{2}}{\sqrt{1-{v}^{2}/{c}^{2}}}-{m}_{0}{c}^{2}``
`` \Rightarrow \frac{1.6\times {10}^{-19}}{{m}_{0}{c}^{2}}=\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}-1=\frac{1.6\times {10}^{-19}}{9.1\times {10}^{-31}\times 9\times {10}^{16}}``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}-1=0.019536\times {10}^{-4}``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}=1+0.019536\times {10}^{-4}``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}=\frac{1}{1.0000019536}``
`` \Rightarrow 1-{v}^{2}/{c}^{2}=0.99999613``
`` \Rightarrow {v}^{2}/{c}^{2}=0.00000387``
`` \Rightarrow v/c=0.001967231=3\times 0.001967231\times {10}^{8}``
`` =5.92\times {10}^{5}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}`` (b) Kinetic energy of electron = 10 keV`` =1.6\times {10}^{-19}\times 10\times {10}^{3}\,\mathrm{\,J\,}``
`` {m}_{0}{c}^{2}\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)=1.6\times {10}^{-15}``
`` \Rightarrow 9.1\times {10}^{-31}\times 9\times {10}^{16}\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)=1.6\times {10}^{-15}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=\frac{1.6\times {10}^{-15}}{9.1\times 9\times {10}^{-15}}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=\frac{1.6}{9.1\times 9}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}=0.980838``
`` \Rightarrow 1-{v}^{2}/{c}^{2}=0.962043182``
`` \Rightarrow {v}^{2}/{c}^{2}=1-0.962043182``
`` \Rightarrow {v}^{2}=0.341611359\times {10}^{18}``
`` \Rightarrow v=0.584475285\times {10}^{8}``
`` \Rightarrow v=5.85\times {10}^{7}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
`` `` (c) Kinetic energy of electron`` =10\,\mathrm{\,MeV\,}={10}^{7}\times 1.6\times {10}^{-19}\,\mathrm{\,J\,}``
`` \Rightarrow \frac{{m}_{0}{c}^{2}}{2\sqrt{1-{v}^{2}-{c}^{2}}}-{m}_{0}{c}^{2}=1.6\times {10}^{-12}``
`` \Rightarrow {m}_{0}{c}^{2}\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)=1.6\times {10}^{-12}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}\mathit{/}{c}^{\mathit{2}}}}-1=\frac{1.6\times {10}^{-12}}{9.1\times 9\times {10}^{-31}\times {10}^{16}}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=1.019536\times {10}^{3}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=1019.536+1``
`` \Rightarrow \sqrt{1-{v}^{2}/{c}^{2}}=0.000979877``
`` \Rightarrow 1-{v}^{2}/{c}^{2}=0.99\times {10}^{-6}``
`` \Rightarrow v=2.999999039\times {10}^{8}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
Page No 458:
- #26-a1 eV,Ans : Kinetic energy of electron = 1 eV = `` 1.6\times {10}^{-19}\,\mathrm{\,J\,}``
From eq. (1), we get
`` 1.6\times {10}^{-19}=\frac{{m}_{0}{c}^{2}}{\sqrt{1-{v}^{2}/{c}^{2}}}-{m}_{0}{c}^{2}``
`` \Rightarrow \frac{1.6\times {10}^{-19}}{{m}_{0}{c}^{2}}=\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}-1=\frac{1.6\times {10}^{-19}}{9.1\times {10}^{-31}\times 9\times {10}^{16}}``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}-1=0.019536\times {10}^{-4}``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}=1+0.019536\times {10}^{-4}``
`` \Rightarrow \frac{1}{\sqrt{1-v/{c}^{2}}}=\frac{1}{1.0000019536}``
`` \Rightarrow 1-{v}^{2}/{c}^{2}=0.99999613``
`` \Rightarrow {v}^{2}/{c}^{2}=0.00000387``
`` \Rightarrow v/c=0.001967231=3\times 0.001967231\times {10}^{8}``
`` =5.92\times {10}^{5}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
- #26-b10 keV andAns : Kinetic energy of electron = 10 keV`` =1.6\times {10}^{-19}\times 10\times {10}^{3}\,\mathrm{\,J\,}``
`` {m}_{0}{c}^{2}\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)=1.6\times {10}^{-15}``
`` \Rightarrow 9.1\times {10}^{-31}\times 9\times {10}^{16}\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)=1.6\times {10}^{-15}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=\frac{1.6\times {10}^{-15}}{9.1\times 9\times {10}^{-15}}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=\frac{1.6}{9.1\times 9}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}=0.980838``
`` \Rightarrow 1-{v}^{2}/{c}^{2}=0.962043182``
`` \Rightarrow {v}^{2}/{c}^{2}=1-0.962043182``
`` \Rightarrow {v}^{2}=0.341611359\times {10}^{18}``
`` \Rightarrow v=0.584475285\times {10}^{8}``
`` \Rightarrow v=5.85\times {10}^{7}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
`` ``
- #26-c10 MeV.Ans : Kinetic energy of electron`` =10\,\mathrm{\,MeV\,}={10}^{7}\times 1.6\times {10}^{-19}\,\mathrm{\,J\,}``
`` \Rightarrow \frac{{m}_{0}{c}^{2}}{2\sqrt{1-{v}^{2}-{c}^{2}}}-{m}_{0}{c}^{2}=1.6\times {10}^{-12}``
`` \Rightarrow {m}_{0}{c}^{2}\left(\frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1\right)=1.6\times {10}^{-12}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}\mathit{/}{c}^{\mathit{2}}}}-1=\frac{1.6\times {10}^{-12}}{9.1\times 9\times {10}^{-31}\times {10}^{16}}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=1.019536\times {10}^{3}``
`` \Rightarrow \frac{1}{\sqrt{1-{v}^{2}/{c}^{2}}}-1=1019.536+1``
`` \Rightarrow \sqrt{1-{v}^{2}/{c}^{2}}=0.000979877``
`` \Rightarrow 1-{v}^{2}/{c}^{2}=0.99\times {10}^{-6}``
`` \Rightarrow v=2.999999039\times {10}^{8}\,\mathrm{\,m\,}/\,\mathrm{\,s\,}``
Page No 458: