CBSE-XI-Physics

47: The Special Theory of Relativity

with Solutions - page 4
Qstn# iv-17 Prvs-QstnNext-Qstn
  • #17
    By what fraction does the mass of a spring change when it is compressed by 1 cm? The mass of the spring is 200 g at its natural length and the spring constant is 500 N m-1.
    Ans : Given:
    Compression in the string, x = 1 cm = 1 × 10-2 m
    Spring constant, k = 500 N/m
    Mass of the spring, m = 200 g = 0.2 kg
    Energy stored in the spring, E`` =\frac{1}{2}k{x}^{2}``
    `` \Rightarrow E=\frac{1}{2}\times 500\times {10}^{-4}``
    `` =0.025\,\mathrm{\,J\,}``
    This energy can be converted into mass according to mass energy equivalence. Thus,
    `` \,\mathrm{\,Increase\,}\,\mathrm{\,in\,}\,\mathrm{\,mass\,},∆m=\frac{E}{{c}^{2}}``
    `` =\frac{0.025}{{c}^{2}}``
    `` =\frac{0.025}{9\times {10}^{16}}\,\mathrm{\,kg\,}``
    `` \,\mathrm{\,Fractional\,}\,\mathrm{\,change\,}\,\mathrm{\,of\,}\,\mathrm{\,mass\,},\frac{∆m}{m}=\frac{0.025}{9\times {10}^{16}}\times \frac{1}{0.2}``
    `` \Rightarrow \frac{∆m}{m}=0.01388\times {10}^{-16}``
    `` \Rightarrow \frac{∆m}{m}=1.4\times {10}^{-18}``
    `` ``
    Page No 458: