CBSE-XI-Physics

40: Electromagnetic Waves

with Solutions -
  • #7
    A plane electromagnetic wave is passing through a region. Consider (a) electric field (b) magnetic field (c) electrical energy in a small volume and (d) magnetic energy in a small volume. Construct the pairs of the quantities that oscillate with equal frequencies.
    Ans : Let the electromagnetic wave be propagating in the z-direction. The vibrations of the electric and magnetic fields are given by:
    Ex= E0 sin (kz - ωt)
    By= B0 sin (kz - ωt)
    Let the volume of the region be V.
    The angular frequency of the vibrations of the electric and magnetic fields are same and are equal to ω. Therefore, their frequency, `` f=\frac{\omega }{2\pi }``, is same.
    The electrical energy in the region,
    UE = `` \left(\frac{1}{2}{\in }_{0}{E}^{2}\right)\times V``
    It can be written as:
    `` {U}_{\,\mathrm{\,E\,}}=\left(\frac{1}{2}{\in }_{0}\left({{E}_{0}}^{2}{\,\mathrm{\,sin\,}}^{2}\right(kz-\omega t)\right)\times V``
    `` {U}_{E}=\left(\frac{1}{2}{\in }_{0}{{E}_{0}}^{2}\times \frac{\left(1-\,\mathrm{\,cos\,}2(kz-\omega t)\right)}{2}\right)\times V``
    `` {U}_{E}=\left(\frac{1}{4}{\in }_{0}{{E}_{0}}^{2}\times \left(1-\,\mathrm{\,cos\,}2(kz-\omega t)\right)\right)\times V``
    `` ``
    The magnetic energy in the region,
    `` {U}_{\,\mathrm{\,B\,}}=\left(\frac{{B}^{2}}{2{\mu }_{0}}\right)\times V``
    `` {U}_{\,\mathrm{\,B\,}}=\left(\frac{{{B}_{0}}^{2}{\,\mathrm{\,sin\,}}^{2}(kz-\omega t)}{2{\mu }_{0}}\right)\times V``
    `` \Rightarrow {U}_{\,\mathrm{\,B\,}}=\left(\frac{{{B}_{0}}^{2}\left(1-\,\mathrm{\,cos\,}(2kz-2\omega t)\right)}{4{\mu }_{0}}\right)\times V``
    The angular frequency of the electric and magnetic energies is same and is equal to 2ω.
    Therefore, their frequency, `` f\text{'}=\frac{2\omega }{2\pi }=2f``
    `` ``, will be same.
    Thus, the electric and magnetic fields have same frequencies and the electrical and magnetic energies will have same frequencies.
    Page No 338: