CBSE-XI-Physics

35: Magnetic Field due to a Current

with Solutions - page 3
Qstn# iii-1 Prvs-QstnNext-Qstn
  • #1
    The magnetic field at the origin due to a current element
    i dl→placed at a position
    r→is
    (a)
    μ0i4πdl →×r →r3
    (b)
    -μ0i4πr →×dl →r3
    (c)
    μ0i4πr →×dl →r3
    (d)
    -μ0i4πdl →×r →r3
    digAnsr:   a,b
    Ans : (a) `` \frac{{\,\mathrm{\,\mu \,}}_{0}i}{4\pi }\frac{d\stackrel{\to }{l}\times \stackrel{\to }{r}}{{r}^{3}}``
    (b) `` -\frac{{\,\mathrm{\,\mu \,}}_{0}i}{4\pi }\frac{\stackrel{\to }{r}\times d\stackrel{\to }{l}}{{r}^{3}}``
    The magnetic field at the origin due to current element `` id\stackrel{\to }{l}`` placed at a position `` \stackrel{\to }{r}`` is given by
    `` d\stackrel{\to }{B}=\frac{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,o\,}}}{4\,\mathrm{\,\pi \,}}i\frac{\stackrel{\to }{r}\times d\stackrel{\to }{l}}{{r}^{3}}``
    `` ``
    According to the cross product property,
    `` \stackrel{\to }{A}\times \stackrel{\to }{B}=-\stackrel{\to }{B}\times \stackrel{\to }{A}``
    `` \Rightarrow d\stackrel{\to }{B}=-\frac{{\,\mathrm{\,\mu \,}}_{\,\mathrm{\,o\,}}}{4\,\mathrm{\,\pi \,}}i\frac{\stackrel{\to }{r}\times \stackrel{\to }{dl}}{{r}^{3}}``
    Page No 249: