CBSE-XI-Physics

17: Light Waves

with Solutions - page 2
Qstn# ii-9 Prvs-QstnNext-Qstn
  • #9
    The wavefronts of a light wave travelling in vacuum are given by x + y + z = c. The angle made by the direction of propagation of light with the X-axis is
    (a) 0°
    (b) 45°
    (c) 90°
    (d)
    cos-1 1/3
    digAnsr:   d
    Ans : (d) `` {\,\mathrm{\,cos\,}}^{-1}\left(1/\sqrt{3}\right)``
    On writing the given equation in the plane equation form lx + my + nz = p,
    where l2 + m2 + n2 = 1 and p>0, we get:
    `` \frac{1}{\sqrt{3}}x+\frac{1}{\sqrt{3}}y+\frac{1}{\sqrt{3}}z=\frac{c}{\sqrt{3}}``
    If `` \theta `` is the angle between the normal and +X axis, then
    `` \,\mathrm{\,cos\,}\theta =\frac{1}{\sqrt{3}}``
    `` \Rightarrow \theta ={\,\mathrm{\,cos\,}}^{-1}\left(\frac{1}{\sqrt{3}}\right)``
    Page No 379: