CBSE-XI-Physics

12: Simple Harmonic Motion

with Solutions - page 5

Note: Please signup/signin free to get personalized experience.

Note: Please signup/signin free to get personalized experience.

10 minutes can boost your percentage by 10%

Note: Please signup/signin free to get personalized experience.

 
  • Qstn #3
    A particle executes simple harmonic motion with an amplitude of 10 cm. At what distance from the mean position are the kinetic and potential energies equal?
    Ans : It is given that:
    Amplitude of the particle executing simple harmonic motion, A = 10 cm
    To determine the distance from the mean position, where the kinetic energy of the particle is equal to its potential energy:
    Let y be displacement of the particle,
    `` \omega `` be the angular speed of the particle, and
    A be the amplitude of the simple harmonic motion.
    Equating the mathematical expressions for K.E. and P.E. of the particle, we get:
    `` \left(\frac{1}{2}\right)m{\,\mathrm{\,\omega \,}}^{2}\left({A}^{2}-{y}^{2}\right)=\left(\frac{1}{2}\right)m{\,\mathrm{\,\omega \,}}^{2}{y}^{2}``
    A2 - y2 = y2
    2y2 = A2
    `` \Rightarrow y=\frac{A}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5\sqrt{2}``
    The kinetic energy and potential energy of the particle are equal at a distance of `` 5\sqrt{2}`` cm from the mean position.
    Page No 252:
  • Qstn #4
    The maximum speed and acceleration of a particle executing simple harmonic motion are 10 cm s-1 and 50 cm s-2. Find the position(s) of the particle when the speed is 8 cm s-1.
    Ans : It is given that:
    Maximum speed of the particle, `` {v}_{Max}`` = 10 cms`` -1``
    Maximum acceleration of the particle, `` {a}_{Max}`` = 50 cms-2​
    The maximum velocity of a particle executing simple harmonic motion is given by,
    `` {v}_{Max}=A\omega ``
    where `` \omega \,\mathrm{\,is\,}\,\mathrm{\,angular\,}\,\mathrm{\,frequency\,},\,\mathrm{\,and\,}``
    A is amplitude of the particle.
    Substituting the value of `` {v}_{Max}`` in the above expression, we get:
    Aω = 10 `` ...\left(1\right)``
    `` \Rightarrow {\,\mathrm{\,\omega \,}}^{2}=\frac{100}{{A}^{2}}``
    aMax = ω2A = 50 cms-1
    `` \Rightarrow {\omega }^{2}=\frac{50}{A}...\left(2\right)``
    `` \,\mathrm{\,From\,}\,\mathrm{\,the\,}\,\mathrm{\,equations\,}\left(1\right)\,\mathrm{\,and\,}\left(2\right),\,\mathrm{\,we\,}\,\mathrm{\,get\,}:``
    `` \frac{100}{{A}^{2}}=\frac{50}{A}``
    `` \Rightarrow A=2\,\mathrm{\,cm\,}``
    `` \mathbf{\therefore }\omega =\sqrt{\frac{100}{{A}^{2}}}=5{\,\mathrm{\,sec\,}}^{-1}``
    To determine the positions where the speed of the particle is 8 ms-1, we may use the following formula:
    v2 = ω2 (A2 - y2)
    where y is distance of particle from the mean position, and
    v is velocity of the particle.
    On substituting the given values in the above equation, we get:
    64 = 25 (4 - y2)
    `` \Rightarrow \frac{64}{25}=4-{y}^{2}``
    ⇒ 4 - y2 = 2.56
    ⇒ y2 = 1.44
    ⇒​ y = `` \sqrt{1.44}``
    ⇒ y = ± 1.2 cm (from the mean position)
    Page No 252:
  • Qstn #5
    A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s-1)t + π/6]. Find
    Ans : Given:
    Equation of motion of the particle executing S.H.M.,
    `` x=\left(2.0\,\mathrm{\,cm\,}\right)\,\mathrm{\,sin\,}\left[\left(100{s}^{-1}\right)t+\frac{\,\mathrm{\,\pi \,}}{6}\right]``
    `` \,\mathrm{\,Mass\,}\,\mathrm{\,of\,}\,\mathrm{\,the\,}\,\mathrm{\,particle\,},m=10\,\mathrm{\,g\,}`` ...(1)
    General equation of the particle is given by,
    `` x=A\,\mathrm{\,sin\,}(\omega t+\varphi )`` ...(2)
    On comparing the equations (1) and (2) we get:
  • #5-a
    the amplitude, the time period and the spring constant.
    Ans : Amplitude, A is 2 cm.
    Angular frequency, ω is 100 s-1​.
    `` \,\mathrm{\,Time\,}\,\mathrm{\,period\,}\,\mathrm{\,is\,}\,\mathrm{\,calculated\,}\,\mathrm{\,as\,},``
    `` T=\frac{2\,\mathrm{\,\pi \,}}{\omega }=\frac{2\,\mathrm{\,\pi \,}}{100}=\frac{\,\mathrm{\,\pi \,}}{50}\,\mathrm{\,s\,}``
    `` =0.063\,\mathrm{\,s\,}``
    Also, we know -
    `` T=2\,\mathrm{\,\pi \,}\sqrt{\frac{m}{k}}``
    `` \,\mathrm{\,where\,}\,\mathrm{\,k\,}\,\mathrm{\,is\,}\,\mathrm{\,the\,}\,\mathrm{\,sprin\,}g\,\mathrm{\,constant\,}.``
    `` \Rightarrow {T}^{2}=4{\,\mathrm{\,\pi \,}}^{2}\frac{m}{k}``
    `` \Rightarrow k=\frac{4{\,\mathrm{\,\pi \,}}^{2}m}{{T}^{2}}={10}^{5}\,\mathrm{\,dyne\,}/\,\mathrm{\,cm\,}``
    `` =100\,\mathrm{\,N\,}/\,\mathrm{\,m\,}``
  • #5-b
    the position, the velocity and the acceleration at t = 0.
    Ans : At t = 0 and x = 2 cm `` \,\mathrm{\,sin\,}\frac{\,\mathrm{\,\pi \,}}{6}``
    `` =2\times \frac{1}{2}=1\,\mathrm{\,cm\,}\,\mathrm{\,from\,}\,\mathrm{\,the\,}\,\mathrm{\,mean\,}\,\mathrm{\,position\,},``
    We know:
    x = A sin (ωt + ϕ)
    Using `` v=\frac{dx}{dt},`` we get:
    v = Aω cos (ωt + ϕ)
    `` =2\times 100\,\mathrm{\,cos\,}\left(0+\frac{\,\mathrm{\,\pi \,}}{6}\right)``
    `` =200\times \frac{\sqrt{3}}{2}``
    `` =100\sqrt{3}{\,\mathrm{\,cms\,}}^{-1}``
    `` =1.73{\,\mathrm{\,ms\,}}^{-1}``
    Acceleration of the particle is given by,
    a = `` -{\omega }^{2}``x
    = 1002×1 = 10000 cm/s2
    Page No 252:
  • Qstn #6
    The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and t in second. When does the particle
    Ans : Given:
    The equation of motion of a particle executing S.H.M. is,
    `` x=5\,\mathrm{\,sin\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)``
    The general equation of S..H.M. is give by,
    `` x=A\,\mathrm{\,sin\,}(\omega t+\varphi )``
  • #6-a
    first come to rest
    Ans : Maximum displacement from the mean position is equal to the amplitude of the particle.
    As the velocity of the particle is zero at extreme position, it is at rest.
    `` \therefore \,\mathrm{\,Displacement\,}`` x = 5, which is also the amplitude of the particle.
    `` \Rightarrow 5=5\,\mathrm{\,sin\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)``
    `` \,\mathrm{\,Now\,},``
    `` \,\mathrm{\,sin\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)=1=\,\mathrm{\,sin\,}\frac{\,\mathrm{\,\pi \,}}{2}``
    `` \Rightarrow 20t+\frac{\,\mathrm{\,\pi \,}}{3}=\frac{\,\mathrm{\,\pi \,}}{2}``
    `` \Rightarrow t=\frac{\,\mathrm{\,\pi \,}}{120}\,\mathrm{\,s\,}``
    The particle will come to rest at `` \frac{\,\mathrm{\,\pi \,}}{120}\,\mathrm{\,s\,}``
  • #6-b
    first have zero acceleration
    Ans : Acceleration is given as,
    a = ω2x
    `` ={\,\mathrm{\,\omega \,}}^{2}\left[5\,\mathrm{\,sin\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)\right]``
    For a = 0,
    `` 5\,\mathrm{\,sin\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)=0``
    `` \Rightarrow \,\mathrm{\,sin\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)=\,\mathrm{\,sin\,}\pi ``
    `` \Rightarrow 20t=\,\mathrm{\,\pi \,}-\frac{\,\mathrm{\,\pi \,}}{3}=\frac{2\,\mathrm{\,\pi \,}}{3}``
    `` \Rightarrow t=\frac{\,\mathrm{\,\pi \,}}{30}\,\mathrm{\,s\,}``
  • #6-c
    first have maximum speed?
    Ans : The maximum speed `` \left(v\right)`` is given by,
    `` v=\,\mathrm{\,A\,}\omega \,\mathrm{\,cos\,}\left(\omega t+\frac{\,\mathrm{\,\pi \,}}{3}\right)`` (using `` v=\frac{dx}{dt}``)
    `` =20\times 5\,\mathrm{\,cos\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)``
    For maximum velocity:
    `` \,\mathrm{\,cos\,}\left(20t+\frac{\,\mathrm{\,\pi \,}}{3}\right)=-1=\,\mathrm{\,cos\,}\,\mathrm{\,\pi \,}``
    `` \Rightarrow 20t=\,\mathrm{\,\pi \,}-\frac{\,\mathrm{\,\pi \,}}{3}=\frac{2\,\mathrm{\,\pi \,}}{3}``
    `` \Rightarrow t=\frac{\,\mathrm{\,\pi \,}}{30}\,\mathrm{\,s\,}``
    Page No 252:
  • Qstn #7
    Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan-1 0.75) where x is in centimetre and t in second. The motion is started at t = 0.
    Ans : It is given that a particle executes S.H.M.
    Equation of S.H.M. of the particle:
    x = 2.0 cos (50`` \,\mathrm{\,\pi \,}``t + tan-10.75)
    = 2.0 cos (50`` \,\mathrm{\,\pi \,}``t + 0.643)
  • #7-a
    When does the particle come to rest for the first time?
    Ans : Velocity of the particle is given by,
    `` v=\frac{dx}{dt}``
    v = -100`` \,\mathrm{\,\pi \,}`` sin (50`` \,\mathrm{\,\pi \,}``t + 0.643)
    As the particle comes to rest, its velocity becomes be zero.
    ⇒​ v = -100`` \,\mathrm{\,\pi \,}`` sin (50`` \,\mathrm{\,\pi \,}``t + 0.643) = 0
    ⇒ sin (50`` \,\mathrm{\,\pi \,}``t + 0.643) = 0 = sin `` \,\mathrm{\,\pi \,}``
    When the particle initially comes to rest,
    50`` \,\mathrm{\,\pi \,}``t + 0.643 = `` \pi ``
    ⇒ t = 1.6 × 10-2 s
  • #7-b
    When does he acceleration have its maximum magnitude for the first time?
    Ans : Acceleration is given by,
    `` a=\frac{dv}{dt}``
    `` =-100\,\mathrm{\,\pi \,}\times 50\pi \,\mathrm{\,cos\,}\left(50\,\mathrm{\,\pi \,}t+0.643\right)``
    For maximum acceleration:
    cos (50`` \,\mathrm{\,\pi \,}``t + 0.643) = -1 = cos `` \,\mathrm{\,\pi \,}`` (max) (so that a is max)
    ⇒ t = 1.6 × 10-2 s
  • #7-c
    When does the particle come to rest for
    Ans : When the particle comes to rest for the second time, the time is given as,
    50`` \,\mathrm{\,\pi \,}``t + 0.643 = 2`` \,\mathrm{\,\pi \,}``
    ⇒ ​ t = 3.6 × 10-2 s
    Page No 252:
  • Qstn #8
    Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.
    Ans : As per the conditions given in the question,
    `` {y}_{1}=\frac{A}{2};``
    `` {y}_{2}=A`` (for the given two positions)
    Let y1 and y2 be the displacements at the two positions and A be the amplitude.
    Equation of motion for the displacement at the first position is given by,
    y1 = Asinωt1
    As displacement is equal to the half of the amplitude,
    `` \frac{A}{2}=A\,\mathrm{\,sin\,}\omega {t}_{1}``
    `` \Rightarrow \,\mathrm{\,sin\,}\omega {t}_{1}=\frac{1}{2}``
    `` \Rightarrow \frac{2\,\mathrm{\,\pi \,}\times {t}_{1}}{T}=\frac{\,\mathrm{\,\pi \,}}{6}``
    `` \Rightarrow {t}_{1}=\frac{T}{12}``
    The displacement at second position is given by,
    y2 = A sin ωt2
    As displacement is equal to the amplitude at this position,
    ⇒ A = A sin ωt2
    ⇒ sinωt2 = 1
    `` \Rightarrow \omega {t}_{2}=\frac{\,\mathrm{\,\pi \,}}{2}``
    `` \Rightarrow \left(\frac{2\,\mathrm{\,\pi \,}}{\,\mathrm{\,T\,}}\right){t}_{2}=\frac{\,\mathrm{\,\pi \,}}{2}\left(\because \,\mathrm{\,sin\,}\frac{\,\mathrm{\,\pi \,}}{2}=1\right)``
    `` \Rightarrow {t}_{2}=\frac{T}{4}``
    `` ``
    `` \therefore {t}_{2}-{t}_{1}=\frac{T}{4}-\frac{T}{12}=\frac{T}{6}``
    Page No 252:
  • Qstn #9
    The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N m-1. What mass should be attached to the spring?
    Ans : Given:
    Spring constant, k =0.1 N/m
    Time period of the pendulum of clock, T = 2 s
    Mass attached to the string, m, is to be found.
    The relation between time period and spring constant is given as,
    `` \,\mathrm{\,T\,}=2\,\mathrm{\,\pi \,}\sqrt{\left(\frac{m}{k}\right)}``
    On substituting the respective values, we get:
    `` 2=2\,\mathrm{\,\pi \,}\sqrt{\frac{m}{k}}``
    `` \Rightarrow {\,\mathrm{\,\pi \,}}^{2}\left(\frac{m}{0.1}\right)=1``
    `` \therefore m=\frac{0.1}{{\,\mathrm{\,\pi \,}}^{2}}=\frac{0.1}{10}``
    `` =0.01\,\mathrm{\,kg\,}\approx 10\,\mathrm{\,g\,}``
    Page No 252: