CBSE-XI-Physics

12: Simple Harmonic Motion

with Solutions - page 4
Qstn# iv-2 Prvs-QstnNext-Qstn
  • #2
    The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s-1 and 10 m s-2 at a certain instant. Find the amplitude and the time period of the motion.
    Ans : It is given that:
    Position of the particle, x = 2 cm = 0.02 m
    Velocity of the particle, v = 1 ms-1.
    Acceleration of the particle, a = 10 ms-2.
    Let `` \omega `` be the angular frequency of the particle.
    The acceleration of the particle is given by,
    a = ω2x
    `` \Rightarrow \omega =\sqrt{\frac{a}{x}}=\sqrt{\frac{10}{0.02}}``
    `` =\sqrt{500}=10\sqrt{5}\,\mathrm{\,Hz\,}``
    `` \,\mathrm{\,Time\,}\,\mathrm{\,period\,}\,\mathrm{\,of\,}\,\mathrm{\,the\,}\,\mathrm{\,motion\,}\,\mathrm{\,is\,}\,\mathrm{\,given\,}\,\mathrm{\,as\,},``
    `` T=\frac{2\,\mathrm{\,\pi \,}}{\,\mathrm{\,\omega \,}}=\frac{2\,\mathrm{\,\pi \,}}{10\sqrt{5}}``
    `` =\frac{2\times 3.14}{10\times 2.236}``
    `` =0.28\,\mathrm{\,s\,}``
    Now, the amplitude A is calculated as,
    `` v=\omega \sqrt{{A}^{2}-{x}^{2}}``
    `` ``
    `` \Rightarrow {v}^{2}={\omega }^{2}\left({A}^{2}-{x}^{2}\right)``
    `` 1=500\left({A}^{2}-0.0004\right)``
    `` \Rightarrow A=0.0489=0.049\,\mathrm{\,m\,}``
    `` \Rightarrow A=4.9\,\mathrm{\,cm\,}``
    Page No 252: