CBSE-XI-Physics

12: Simple Harmonic Motion

with Solutions - page 4
Qstn# iii-12 Prvs-QstnNext-Qstn
  • #12
    A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic
    (a) with amplitude x0
    (b) with amplitude 2x0
    (c) with time period
    2πω
    (d) with time period
    πω.
    digAnsr:   d
    Ans : (d) with time period `` \frac{\pi }{\omega }``
    Given equation:
    x = xo sin2 ωt
    ⇒​`` x=\frac{{x}_{0}}{2}(\,\mathrm{\,cos\,}2\omega t-1)``
    Now, the amplitude of the particle is xo/2 and the angular frequency of the SHM is 2ω.
    Thus, time period of the SHM = `` \frac{2\pi }{\text{angular frequency}}=\frac{2\pi }{2\omega }=\frac{\pi }{\omega }``
    Page No 252: