CBSE-XI-Physics
12: Simple Harmonic Motion
- #12A particle moves on the X-axis according to the equation x = x0 sin2 ωt. The motion is simple harmonic
(a) with amplitude x0
(b) with amplitude 2x0
(c) with time period
2πω
(d) with time period
πω.digAnsr: dAns : (d) with time period `` \frac{\pi }{\omega }``
Given equation:
x = xo sin2 ωt
⇒`` x=\frac{{x}_{0}}{2}(\,\mathrm{\,cos\,}2\omega t-1)``
Now, the amplitude of the particle is xo/2 and the angular frequency of the SHM is 2ω.
Thus, time period of the SHM = `` \frac{2\pi }{\text{angular frequency}}=\frac{2\pi }{2\omega }=\frac{\pi }{\omega }``
Page No 252: