CBSE-XI-Physics

04: The Forces

with Solutions - page 2
Qstn# iv-3 Prvs-QstnNext-Qstn
  • #3
    At what distance should two charges, each equal to 1 C, be placed so that the force between them equals your weight?
    Ans : Given: `` {q}_{1}={q}_{2}=1\,\mathrm{\,C \,}``
    By Coulomb's law, the force of attraction between the two charges is given by
    `` F=\frac{1}{4\,\mathrm{\,\pi \,}{\in }_{0}}\frac{{q}_{1}{q}_{2}}{{r}^{2}}``
    `` =\frac{9\times {10}^{9}\times 1\times 1}{{r}^{2}}``
    However, the force of attraction is equal to the weight (F = mg).
    `` \therefore mg=\frac{9\times {10}^{9}}{{r}^{2}}``
    `` \Rightarrow {r}^{2}=\frac{9\times {10}^{9}}{m\times 10}=\frac{9\times {10}^{8}}{m}(\,\mathrm{\,Taking \,}g=10\,\mathrm{\,m \,}/{\,\mathrm{\,s \,}}^{2})``
    `` \Rightarrow {r}^{2}=\frac{9\times {10}^{8}}{m}``
    `` \Rightarrow r=\frac{3\times {10}^{4}}{\sqrt{m}}``
    Assuming that m = 81 kg, we have:
    `` r=\frac{3\times {10}^{4}}{\sqrt{81}}``
    `` =\frac{3}{9}\times {10}^{4}\,\mathrm{\,m \,}``
    `` =3333.3\,\mathrm{\,m \,}``
    ∴ The distance r is 3333.3 m.