ICSE-X-Mathematics

08: Matrices Class 10 Maths ML Aggarwal Solutions

with Solutions -
 

Exercise 8.1
1. Classify the following matrices:
(i)



(ii)





(iii)

(iv)

(v)

(vi)


Answer
(i) It is square matrix of order 2
(ii) It is column matrix of order 1 × 3
(iii) It is column matrix of order 3 × 1
(iv) It is matrix of order 3 × 2
(v) It is matrix of order 2 × 3
(vi) It is zero matrix or order 2 × 3
2. (i) If a matrix has 4 elements, what are the possible order it can have ?
(ii) If a matrix has 8 elements, what are the possible order it can have ?
Answer
(i) It can have 1 × 4, 4 × 1, or 2 × 2 order
(ii) It can have 1 × 8, 8 × 1, 2 × 4 or 4 × 2 order
3. Construct a 2×2 matrix whose elements aij are given by
(a) aij = 2i - j
(b) aij = i, j
Answer :
(i) It can be


(ii) It can be





4. Find the values of x and y if :








Answer
Comparing corresponding elements,
2x + y = 5 ...(i)
3x - 2y = 4 ...(ii)
Multiply (i) by 2 and (ii) by ‘1’ we get
4x + 2y = 10, 3x - 2y = 4
Adding we get, 7x = 14
⇒ x = 2
Substituting the value of x in (i)
2 × 2 + y = 5
⇒ 4 + y = 5
y = 5 - 4 = 1
Hence x = 2, y = 1





5. Find the value of x if
=







Answer


Comparing the corresponding terms, we get,

- y = 2

⇒ y = - 2

3x + y = 1 ⇒ 3x ≠ 1 - y

⇒ 3x = 1 - (-2)

= 1 + 2

= 3

⇒ x = 3/3 = 1

Hence x = 1, y = - 2





6. If
=

find values of x and y



Answer


Comparing the corresponding terms, we get,

x + 3 = 5

⇒ x = 5 - 3 = 2

⇒ y - 4 = 3

⇒ y = 3 + 4 = 7

x = 2, y = 7





7. Find the values of x, y and z if







Answer

Comparing the corresponding elements of equal determinants
,

x + 2 = - 5

⇒ x = - 5 - 2 = - 7

∴ x = - 7, 5z = - 20

⇒ z = - 20/5 = - 4

⇒ y2 + y = 6

⇒ y2 + y - 6 = 0

⇒ y2 + 3y - 2y - 6 = 0

⇒ y(y + 3) - 2(y+ 3) = 0

⇒ (y + 3)(y - 2) = 0

Either y + 3 = 0, then y = - 3 or y - 2 = 0, then y = 2

Hence x = - 7, y = - 3, 2, z = - 4





8. Find the values of x, y, a and b if







Answer

Comparing corresponding elements

x - 2 = 3, y = 1

x = 3 + 2 = 5

a + 2b = 5 ....(i)

3a - b = 1 ....(ii)

Multiplying (i) by 1 and (ii) by 2

a + 2b = 5, 6a - 2b = 2

Adding, we get, 7a = 7

⇒ a = 1

Substituting the value of a in (i)

1 + 2b = 5

⇒ 2b = 5 - 1 = 4

⇒ b = 2

Hence x = 5, y = 1, a = 1, b = 2





9. Find the values of a, b, c and d if
=









Answer


Comparing the corresponding terms, we get3 = d

⇒ d = 3

⇒ 5 + c = - 1

⇒ c = - 1 - 5

⇒ c = - 6

a + b = 6 and ab = 8

∴ (a - b)2 = (a + b)2 - 4ab

= (6)2 - 4 × 8 = 36 - 32

= 4

= (± 2)2

∴ a - b = ± 2

(i) If a - b = 2

a + b = 6

Adding, we get 2a = 8 ⇒ a = 4

a + b = 6

⇒ 4 + b = 6

⇒ b = 6 - 4 = 2

(ii) If a - b = - 2

a + b = 6

Adding, we get, 2a = 4

⇒ a = 4/2 = 2

a + b = 6

⇒ 2 + b = 6

⇒ b = 6 - 2 = 4

∴ a = 2, b = 4

Hence, a = 4, b = 2, or a = 2, b = 4
c = - 6 and d = 3






10. Find the values of x, y and b, if







Answer

Comparing the corresponding terms, we get,

3x + 4y = 2 .....(i)

x - 2y = 4 ...(ii)

Multiplying (i) by 1 and (ii) by 2

3x + 4y = 2, 2x - 4y = 8

Adding we get, 5x = 10

⇒ x = 2

Substituting the value of x in (i)

3 × 2 + 4y = 2,

6 + 4y = 2,

4y = 2 - 6 = - 4

y = - 1

∴ x = 2, y = - 1

a + b = 5 ...(iii)

2a - b = - 5 ...(iv)





Exercise 8.2

1. Given that



find M + 2N



Answer






2. If





Find 2A - 3B





Answer




3. If






Compute 3A + 4B



Answer





4. Given





(i) Find the matrix 2A + B


(ii) Find a matrix 2A + B



Answer







5.

Find A + 2B - 3C



Answer






6. If






Find the matrix X if:


(i) 3A + X = B


(ii) X - 3B = 2A



Answer


(i) 3A + X = B

⇒ X = B - 3A


(ii) X - 3B = 2A

⇒ X = 2A + 3B




7. Solve the matrix equation







Answer :





8. If






find the matrix M



Answer







9. Given








Find the matrix X such that A + 2X = 2B + C



Answer


A + 2X = 2B + C

2X = 2B + C - A




10. Find X and Y if X + Y =








Answer




11. If

find the values of x and y



Answer




12. If





Find the values of x and y





Answer








13. If



Find the values of x and y.


Answer

Comparing the corresponding terms, we get
4 - 4x = - 8
⇒ - 4x = - 8 - 4
⇒ - 4x = - 12
⇒ x = (- 12/-4) = 3
And y + 5 = 2
⇒ y = 2 - 5 = - 3
∴ x = 3, y = - 3






14.



Find the value of a, b and c.
Answer

Comparing the corresponding elements:
a + 1 = 5 ⇒ a = 4
b + 2 = 0 ⇒ b = - 2
- c = 3 ⇒ c = - 3
15. If




and 5A + 2B = C, Find the values of a, b, c.
Answer

Comparing each term
5a + 6 = 9
⇒ 5a = 9 - 6 = 3
⇒ a = 3/5
⇒ 25 + 2b = - 11
⇒ 2b = - 11 - 25 = - 36
⇒ b = - (36/2) = - 18
c = 6
Hence a = 3/5, b = - 18 and c = 6
Exercise 8.3
1. If

is the product AB possible ? Give a reason. If yes, find AB.
Answer
Yes, the product is possible because of number of column in A = number of row in B
i.e., (2 × 2) . (2 × 1) = (2 × 1) is the order of the matrix.



2. If

find AB and BA, Is AB = BA ?
Answer



3. If
Find 2PQ.
Answer



4. Given A =

evaluate A2 - 4A
Answer :

5. If

Find AB - 5C.
Answer

6. If

find A(BA)
Answer



7. Given the matrices:







Find the products of (i) ABC (ii) ACB and state whether they are equal.



Answer




8. Evaluate:







Answer :






9. If



find the matrix AB + BA



Answer






10. If



Find each of the following and state if they are equal.


(i) CA + B


(ii) A + CB



Answer

(i) CA + B


(ii)
We can say that CA + B ≠ A + CB

11. If



Find 2B - A2



Answer





12. If

Compute:
(i) A(B + C)


(ii) (B + C)A



Answer




13. If

Find the matrix C(B - A)



Answer




14. Let



Find A2 + AB + B2



Answer

Given that






15. Let



Find A2 + AC - 5B



Answer






16. If A =




find A2 and A3. Also state that which of these is equal to A.



Answer




From above, it is clear that A3 = A



17. If X =




Show that 6X - X2 = 9I where I is the unit matrix.



Answer

Given that


= 9I = R.H.S
Hence, proved.





18. Show that

is a solution of the matrix equation X2 - 2X - 3I = 0, where I is the unit matrix of order 2



Answer

Given, X2 - 2X - 3I = 0


∴ X2 - 2X - 3I = 0

Hence proved.


19. Find the matrix X or order 2
×
2 which satisfies the equation

+ 2X
=




Answer




20. If A =

find the value of x, so that A2 - 0



Answer


Comparing 1+ x = 0 ⇒ x = - 1






21. If
=

Find the value of x



Answer





Comparing the corresponding elements

x= -1


22. (i) Find x and y if




(ii) Find x and y if
=







Answer


Comparing the corresponding elements

- 3x + 4 = - 5

⇒ - 3x = - 5 - 4 = - 9

- 10 = y

⇒ y = - 10

Hence x = 3, y = - 10

(ii)



Comparing, we get8x = 16

⇒ x = 16/8 = 2

And 9y = 9

⇒ y = 9/9 = 1

Here x = 2, y = 1





23. Find x and y if
=






Answer


Comparing the corresponding elements

2x + y = 3 ...(i)

3x + y = 2 ....(ii)

Subtracting, we get

- x = 1

⇒ x = - 1

Substituting the value of x in (i)

2(-1) + y = 3

⇒ - 2 + y = 3

⇒ y = 3 + 2 = 5
Hence, x = - 1, y = 5





24. If
=

find the values of x and y



Answer


Comparing the corresponding elements2y = 0 ⇒ y = 0

3x = 9 ⇒ x = 3

Hence x = 3, y = 0





Question 25: If



Write down the values of a, b, c and d



Answer


Comparing the corresponding elementsa = 3, b = 4, c = 2, d = 5





26. Find the value of x given that A2
= B




Answer


A2 = B

⇒ A × A = B


Comparing the corresponding elements of two equal matrices, x = 36.






27. If A =



find the value of x, given that A2 - B.



Answer


Corresponding the corresponding elements 3x = 36⇒ x = 12

Hence x = 12





28. If



find x and y when A2 = B



Answer


⇒ 4x = 16 and 1 = - y⇒ x = 4 and y = - 1





29. Find x, y if






Answer


⇒ 2x = 6 and 2y = - 4

⇒ x = 6/2 and y = - 4/2

⇒ x = 3 and ⇒ y = - 2






30.If

find a, b and c



Answer


Comparing the corresponding elements3a + 2 = 11

⇒ 3a = 11 - 2 = 9

∴ a = 9/3 = 3

4a - 3 = b

⇒ b = 4 × 3 - 3

= 12 - 3 = 9

⇒ 3 = c

Hence a= 3, b = 9, c = 3
dlt25397279141765950616">


31. If

find the value of x if AB = BA



Answer


Comparing the corresponding elements

x - 2 = 8 - x

⇒ x + x = 8 + 2

⇒ 2x = 10

∴ x = 10/2

= 5





32. If A =


find x and y so that A2 - xA + yI



Answer


Comparing the corresponding elements3x = 12

⇒ x = 4

2x + y = 7

⇒ 2 ×4 + y = 7

⇒ 8 + y = 7

⇒ y = 7 - 8 = - 1

Hence x = 4, y = - 1





33. If



Find x and y such that PQ = 0



Answer


Comparing the corresponding elements6 + 6y = 0

⇒ 6y = - 6

⇒ y = - 1

2x + 12 = 0

⇒ 2x = - 12

⇒ x = - 6

Hence x = - 6, y = - 1





34. Let

where M is a matrix


(i) State the order of matrix M


(ii) Find the matrix M



Answer

Given (i) M is the order of 1 × 2


Comparing the corresponding elementsx = 1 and x + 2y = 2

⇒ 1 + 2y = 2

⇒ 2y = 2 - 1 = 1

⇒ y = 1/2

Hence x = 1, y = 1/2







35. Given
, X =






(i) the order of matrix X


(ii) the matrix X



Answer


2x + y = 7 ...(i)

- 3x + 4y = 6 ...(ii)

Multiplying (i) by 3 and (ii) by 2, and adding we get:

6x + 3y = 21

- 6x + 8y = 12

11y = 33 ⇒ y = 3

From (i), 2x = 7 - 3 = 4

⇒ x = 2




36. Solve the matrix equation:






Answer


Comparing the corresponding elements.

4x = - 4 ⇒ x = - 1

4y = 8 ⇒ y = 2




37. (i) If

find the matrix C such that AC = B.


(ii) If


find the matrix C such that CA = B.



Answer


(i)


Comparing the corresponding elements,2x - y = - 3 ...(i)

-4x + 5y = 2 ....(ii)

Multiplying (i) by 5 and (ii) by 1

10x - 5y = - 15

- 4x + 5y = 2

Adding, we get 6x = - 13

⇒ x = - 13/6

Substituting the value of x in (i)

2(-13/6) - y = - 3

⇒ - 13/3 - y = - 3

⇒ - y = 3 + 13/3

= (-9 + 13)/3

= 4/3

∴ y = - (4/3)


(ii)


Comparing,2x - 4y = 0

⇒ x - 2y = 0

∴ x = 2y

And -x + 5y = - 3

⇒ - 2y + 5y = - 3

⇒ 3y = - 3

⇒ y = - 1

∴ x = 2y = 2 × (-1) = - 2




38. If A =

find matrix B such that BA = I, where I is unity matrix of order 2.



Answer


Comparing the corresponding terms, we get3a - b = 1, - 4a + 2b = 0

⇒ 2b = 4a

⇒ b = 2a

∴ 3a - b = 1

⇒ 3a - 2a = 1

⇒ a = 1

and b = 2a

⇒ b = 2 × 1 = 2

∴ a = 1, b = 2

and 3c - d = 0 ⇒ d = 3c

- 4c + 2d = 1

⇒ - 4c + 2 × 3c = 1

⇒ - 4c + 6c = 1

⇒ 2c = 1

⇒ c = 1/2

And d = 3c = 3 × 1/2 = 3/2

Hence a = 1, b = 2, c = 1/2, d = 3/2




39. If

Find the matrix A such that AB = C



Answer


Comparing corresponding elements, we get

∵ - 4a + 5b = 17 ...(i)

2a - b = - 1 ...(ii)

- 4c + 5d = 47 ...(iii)

2c - d = - 13 ...(iv)

Multiplying (i) by 1 and (ii) by 2

⇒ - 4a + 5b = 17

4a - 2b = - 2

Adding 3b = 15

⇒ b = 15/3 = 5

2a - b = - 1

⇒ 2a - 5 = - 1

⇒ 2a = - 1 + 5 = 4

⇒ a = 4/2 = 2

∴ a = 2, b = 5

Again multiplying(iii) by 1 and (iv) by 2,

- 4c + 5d = 47

4c - 2d = - 26

Adding 3d = 21

⇒ d = 21/3 = 7

And 2c - d = - 13

⇒ 2c - 7 = - 13

⇒ 2c = - 13 + 7 = - 6

⇒ c = - 6/2 = - 3

∴ c = - 3, d = 7







Multiple Choice Questions

Choose the correct answer from the given four options (1 to 14):


1. If

where aij = i + j, then A is equal to



(a)







(b)







(c)







(d)







Answer


(b)


A = 2×2 where aij = i + j, then A is equal to






2. If

then the values of x and y are



(a) x = 2, y = 7



(b) x = 7, y = 2



(c) x = 3, y = 6



(d) x = - 2, y = 7



Answer


(d) x = - 2, y = 7


Comparing we getx + 3 = 5

⇒ x = 5 - 3 = 2

And y - 4 = 3

⇒ y = 3 + 4 = 7

x = 2, y = 7





3. If

then the values of x and y are



(a) x = 2, y = 3



(b) x = 2, y = - 3



(c) x = - 2,



(d) x = 3, y = 2



Answer


(b) x = 2, y = - 3


Comparing, we get3x = 6

⇒ x = 6/3 = 2

⇒ - y = 3
⇒ x = 2, y = - 3





4. If

then the value of x is



(a) - 2



(b) 0



(c) 2



(d) 2



Answer


(d) 2


Comparing, we get

y = - 2

And x - 2y = 6

⇒ x - 2 × (-2) = 6

⇒ x + 4 = 6

⇒ x = 6 - 4 = 2





5. If

then the value of x - y is



(a) - 3



(b) 1



(c) 3



(d) 5



Answer


(c) 3


Comparing, we get

3y = - 3

⇒ y = -3/3 = - 1

4x = 8

⇒ x = 8/4 = 2

x - y = 2 - (-1)

= 2 + 1 = 3





6. If

then the values of x and y are


(i) x = 2, y = 6



(b) x = 2, y = -6



(c) x = 3, y = - 4



(d) x = 3, y = - 6



Answer




(b) x = 2, y = - 6
Comparing, we get

3x = 6

⇒ x = 6/3 = 2

And 3x - y = 10

2 ×2 - y = 10

⇒ 4 - y = 10

⇒ - y = 10 - 4 = 6

⇒ y = - 6

∴ x = 2, y = -6





7. If

then the matrix A is equal to



(a)






(b)






(c)






(d)







Answer


(d)


Given:




8. If

then A2
is equal to



(a)






(b)






(c)






(d)






Answer


(c)








9. A =

then A2 =
(a)
(b)
(c)
(d)
Answer
(c)






10. If A =

then A2 =
(a)
(b)
(c)
(d)
Answer
Given






11. If A =

then A2 =
(a) A
(b) 0
(c) I
(d) 2A
Answer
(b) 0

Given:

12. If A =

then A2 =
(a)
(b)
(c)






(d) none of these
Answer


(c)
Given,



13. If

then A2 =
(a)
(b)
(c)
(d)
Answer


(a)



14. If A =
,
then A2 = pA, then the value of p is
(a) 2
(b) 4
(c) - 2
(d) - 4
Answer


(b) 4




Comparing, we get
8
= 2p

p = 4





Chapter Test





1. Find the values of a and b if




Answer

Comparing the corresponding elements
a + 3 = 2a + 1
⇒ 2a - a = 3 - 1
⇒ a = 2
b2 + 2 = 3b
⇒ b2 - 3b + 2 = 0
⇒ b2 - b - 2b + 2 = 0
⇒ b(b - 1) - 2(b - 1) = 0
(b - 1)(b - 2) = 0
Either b - 1 = 0, then b = 1
Or b -2 = 0, then b = 1
Or b - 2 = 0, then b = 2
Hence, a = 2, b = 2 or 1
2. Find a, b, c and d if








Answer

Comparing the corresponding elements:
3a = 4 + a
⇒ 3a - a = 4
⇒ 2a = 4
∴ a = 2
3b = a + b + 6
⇒ 3b - b = 2 + 6
⇒ 2b = 8
∴ b = 4
3d = 3 + 2d ⇒ 3d - 2d = 3
∴ d = 3
3c = c + d - 1
⇒ 3c - c = 3 - 1
2c = 2
⇒ c = 1
Hence a = 2, b = 4, c = 1, d = 3
3. Find X if
Answer
Given

4. Determine the matrices A and B when



Answer



5. (i) Find the matrix B if

and A2 = A + 2B
(ii) If



And C =

find A(4B - 3C)
Answer

(i)

Comparing the corresponding elements
4 + 2a = 18
⇒ 2a = 18 - 4 = 14
∴ a = 7
1 + 2b = 7
⇒ 2b = 7 - 1 = 6
∴ b = 3
2 + 2c = 14
⇒ 2c = 14 - 2 = 12
∴ c = 6
3 + 2d = 11
⇒ 2d = 11 - 3 = 8
∴ d = 4
Hence a = 7, b = 3, c = 6, d = 4

(ii)


6. If


Compute (AB)C = (CB) A ?
Answer
Given

It is clear from above that (AB)C ≠ (CB)A.
7. If

find each of the following and state if they are equal:
(i) (A + B)(A - B)
(ii) A2 - B2
Answer
Given


(ii)


We see that (A + B)(A - B) ≠ A2 - B2

8. If A =
find A2 - 5A - 14I
Where I is unit of order 2
×
2
Answer



9. If A =

and A2 = 0 find p and q
Answer


Comparing the corresponding elements
9 + 3p = 0
⇒3p = - 9
⇒ p = - 3
9 + 3q = 0
⇒ 3q = - 9
⇒ q = - 3
Hence p = -3, q = - 3
10. If A =




and A2 = I, find x, y
Answer
Given


Comparing the corresponding elements,
9/25 + 2/5.x = 1
⇒ 2/5.x = 1 = 9/25 = 16/25
x = 16/25 × 5/2 = 8/5
6/25 + 2/5.y = 0
⇒ 2/5y = -6/25
y = - 6/25 × 5/2 = -3/5
Hence x = 8/5, y = -3/5
11. If

find a, b, c and d
Answer

Comparing the corresponding elements
- a = 1
⇒ a = - 1
-b = 0
⇒ b = 0
c = 0 and d = - 1
Hence a = - 1, b = 0, c = 0, d = - 1






12. Find a and b if







Answer


Comparing the corresponding elements2a - 4 = 0

⇒ 2a = 4

⇒ a = 2

2a - 2b = - 2

⇒ 2 × 2 - 2b = - 2

⇒ 4 - 2b = - 2

⇒ - 2b = - 2 - 4

= - 6

⇒ b = 3

Hence a = 2, b = 3





13. If






Find (i) 2A - 3B


(ii) A2


(iii) BA



Answer :

Given


(∵ cot 45° = 1)

(i) 2A - 3B


(ii) A2 = A × A


(iii)